Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed lemon/crash data, find the best predicted crash fatality rate for a year in which there are 500 metric tons of lemon imports. Is the prediction worthwhile?

Short Answer

Expert verified

The regression equation is\(\hat y = - 0.0028x + 16.5\).

The best-predicted crash fatality rate for a year in which there are 500 metric tons of lemon imports will be 15.1. The prediction is not worthwhile as the relationship between lemon imports and crash fatality does not make much sense.

Step by step solution

01

Given information

The given data provides the information of the ‘lemon imports’ and ‘crash fatality rate’, as follows.

02

State the equation for the regression line

the formula for the estimated regression line is

\(y = {b_0} + {b_1}x\).

Here,

\({b_0}\)is the Y-intercept,

\({b_1}\)is the slope,

\(x\)is the explanatory variable, and

\(\hat y\) is the response variable (predicted value).

Let X denote the lemon imports and Y denote the crash fatality rate.

03

Compute the slope and intercept

The calculations required to compute the slope and intercept are as follows.

The sample size is \(\left( n \right) = 5\).

The slope is computed as

\(\begin{array}{c}{b_1} = \frac{{n\left( {\sum {xy} } \right) - \left( {\sum x } \right)\left( {\sum y } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{5 \times 28571.7 - 1863 \times 77.2}}{{5 \times 762589 - {{1863}^2}}}\\ = - 0.00282\end{array}\).

The intercept is computed as

\(\begin{array}{c}{b_0} = \frac{{\left( {\sum y } \right)\left( {\sum {{x^2}} } \right) - \left( {\sum x } \right)\left( {\sum {xy} } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{77.2 \times 762589 - 1863 \times 28571.7}}{{5 \times 762589 - {{1863}^2}}}\\ = 16.4909\end{array}\).

Thus, the estimated regression equation is

\(\begin{array}{c}\hat y = {b_0} + {b_1}x\\ = 16.5 - 0.0028x\end{array}\).

04

Check the model

Refer to exercise 19 of section 10-1 for the following result.

1) The scatter plot shows an approximate linear relationship between the variables.

2) The P-value is 0.0010.

As theP-value is less than the level of significance (0.05), the null hypothesis is rejected.

Therefore, the correlation is statistically significant.

Referring to figure 10-5, the criteria for a good regression model are satisfied.

Thus, the regression equation can be used for prediction.

05

Compute the prediction

Substitute 500 metric tons of lemons in the estimated linear regression model for the crash fatality rate.

\(\begin{array}{c}\hat y = 16.5 - 0.0028x\\ = 16.5 - 0.0028\left( {500} \right)\\ = 15.1\end{array}\).

Therefore, the best-predicted crash fatality rate for a year in which there are 500 metric tons of lemon imports will be 15.1.

The predictions do not seem worthwhile as the relationship between the two variables does not make sense.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explore! Exercises 9 and 10 provide two data sets from “Graphs in Statistical Analysis,” by F. J. Anscombe, the American Statistician, Vol. 27. For each exercise,

a. Construct a scatterplot.

b. Find the value of the linear correlation coefficient r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables.

c. Identify the feature of the data that would be missed if part (b) was completed without constructing the scatterplot.

x

10

8

13

9

11

14

6

4

12

7

5

y

9.14

8.14

8.74

8.77

9.26

8.10

6.13

3.10

9.13

7.26

4.74

Ages of Moviegoers Based on the data from Cumulative Review Exercise 7, assume that ages of moviegoers are normally distributed with a mean of 35 years and a standard deviation of 20 years.

a. What is the percentage of moviegoers who are younger than 30 years of age?

b. Find\({P_{25}}\), which is the 25th percentile.

c. Find the probability that a simple random sample of 25 moviegoers has a mean age that is less than 30 years.

d. Find the probability that for a simple random sample of 25 moviegoers, each of the moviegoers is younger than 30 years of age. For a particular movie and showtime, why might it not be unusual to have 25 moviegoers all under the age of 30?

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the CPI/subway fare data from the preceding exercise and find

the best predicted subway fare for a time when the CPI reaches 500. What is wrong with this prediction?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

22. Crickets and Temperature A classic application of correlation involves the association between the temperature and the number of times a cricket chirps in a minute. Listed below are the numbers of chirps in 1 min and the corresponding temperatures in °F (based on data from The Song of Insects, by George W. Pierce, Harvard University Press). Is there sufficient evidence to conclude that there is a linear correlation between the number of chirps in 1 min and the temperature?

Actress

28

30

29

61

32

33

45

29

62

22

44

54

Actor

43

37

38

45

50

48

60

50

39

55

44

33

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

For 50 randomly selected speed dates, attractiveness ratings by males of their

female date partners (x) are recorded along with the attractiveness ratings by females of their male date partners (y); the ratings are from Data Set 18 “Speed Dating” in Appendix B. The 50 paired ratings yield\(\bar x = 6.5\),\(\bar y = 5.9\), r= -0.277, P-value = 0.051, and\(\hat y = 8.18 - 0.345x\). Find the best predicted value of\(\hat y\)(attractiveness rating by female of male) for a date in which the attractiveness rating by the male of the female is x= 8.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free