Interpreting the Coefficient of Determination. In Exercises 5–8, use the value of the linear correlation coefficient r to find the coefficient of determination and the percentage of the total variation that can be explained by the linear relationship between the two variables.

Weight , Waist r = 0.885 (x = weight of male, y = waist size of male)

Short Answer

Expert verified

The coefficient of determination is 0.783.

It means 78.3% of the variation is explained by the linear association between the weight and the waist size of a male.

And 21.7% of the variation in the response variable (waist size of male)is explained by other factors and random variation.

Step by step solution

01

Given information

The linear correlation coefficient between the weight and the waist size of a male is 0.885.

02

Coefficient of determination

The square of the linear correlation coefficient between the two variables is the coefficient of determination.

Here, the linear correlation coefficient (r) between the weight and the waist size of a male is 0.885.

Thus,

\(\begin{array}{c}{\rm{Coefficient}}\;{\rm{of}}\;{\rm{determination}} = {r^2}\\ = {0.885^2}\\ = 0.783\end{array}\)

Therefore, the value of the coefficient of determination is 0.783.

03

Percentage of variation

Here,

\(\begin{array}{c}{r^2} = 0.783\\ = \frac{{78.3}}{{100}} \times 100\% \\ = 78.3\% \end{array}\)

Therefore, the percentage of the variation explained by the linear association between the weight and the waist size of males is 98.4%.

The rest \(100\% - 78.3\% = 21.7\% \) variation is explained by other factors and random variation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explore! Exercises 9 and 10 provide two data sets from “Graphs in Statistical Analysis,” by F. J. Anscombe, the American Statistician, Vol. 27. For each exercise,

a. Construct a scatterplot.

b. Find the value of the linear correlation coefficient r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables.

c. Identify the feature of the data that would be missed if part (b) was completed without constructing the scatterplot.

x

10

8

13

9

11

14

6

4

12

7

5

y

9.14

8.14

8.74

8.77

9.26

8.10

6.13

3.10

9.13

7.26

4.74

In Exercises 5–8, we want to consider the correlation between heights of fathers and mothers and the heights of their sons. Refer to the

StatCrunch display and answer the given questions or identify the indicated items.

The display is based on Data Set 5 “Family Heights” in Appendix B.

Should the multiple regression equation be used for predicting the height of a son based on the height of his father and mother? Why or why not?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Weighing Seals with a Camera Listed below are the overhead widths (cm) of seals

measured from photographs and the weights (kg) of the seals (based on “Mass Estimation of Weddell Seals Using Techniques of Photogrammetry,” by R. Garrott of Montana State University). The purpose of the study was to determine if weights of seals could be determined from overhead photographs. Is there sufficient evidence to conclude that there is a linear correlation between overhead widths of seals from photographs and the weights of the seals?

Overhead Width

7.2

7.4

9.8

9.4

8.8

8.4

Weight

116

154

245

202

200

191

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

For 30 recent Academy Award ceremonies, ages of Best Supporting Actors (x) and ages of Best Supporting Actresses (y) are recorded. The 30 paired ages yield\(\bar x = 52.1\)years,\(\bar y = 37.3\)years, r= 0.076, P-value = 0.691, and

\(\hat y = 34.4 + 0.0547x\). Find the best predicted value of\(\hat y\)(age of Best Supporting Actress) in 1982, when the age of the Best Supporting Actor (x) was 46 years.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Sports Diameters (cm), circumferences (cm), and volumes (cm3) from balls used in different sports are listed in the table below. Is there sufficient evidence to conclude that there is a linear correlation between diameters and circumferences? Does the scatterplot confirm a linear association?


Diameter

Circumference

Volume

Baseball

7.4

23.2

212.2

Basketball

23.9

75.1

7148.1

Golf

4.3

13.5

41.6

Soccer

21.8

68.5

5424.6

Tennis

7

22

179.6

Ping-Pong

4

12.6

33.5

Volleyball

20.9

65.7

4780.1

Softball

9.7

30.5

477.9

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free