let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

Heights (cm) and weights (kg) are measured for 100 randomly selected

adult males (from Data Set 1 “Body Data” in Appendix B). The 100 paired measurements yield\(\bar x = 173.79\)cm,\(\bar y = 85.93\)kg, r= 0.418, P-value = 0.000, and\(\hat y = - 106 + 1.10x\). Find the best predicted value of\(\hat y\)(weight) given an adult male who is 180 cm tall.

Short Answer

Expert verified

The predicted value of the \(\hat y\)(weight) for an adult male who is 180 cm tall is 92.0 kg.

Step by step solution

01

Given information

The sample number of adult males is\(n = 100\). x represents theheights of adult males and y represents the weights of adult males.

The mean height and weight are \(\bar x = 173.79\)cm and \(\bar y = 85.93\) kg. The correlation coefficient is \(r = 0.418\) and the P-value is 0.000. The regression equation is \(\hat y = - 106 + 1.10x\).

02

Analyze the model

The statistical hypotheses are formed as,

\({H_0}:\) The correlation coefficient is not significant.

\({H_1}:\)The correlation coefficient is significant.

Since the P-value (0.000) is less than the level of significance (0.05). In this case, the null hypothesis is rejected.

Therefore, the correlation coefficient is significant.

Referring to figure 10-5, the regression model is a good model.

The regression equation can be used to predict the value of y.

03

Compute the predicted value

Thepredicted valueis computed as,

\(\begin{array}{c}\hat y = - 106 + \left( {1.10 \times 180} \right)\\ = - 106 + 198\\ = 92.0\end{array}\).

Thus, the predicted value of the \(\hat y\)(weight) for an adult male who is 180 cm tall is 92.0 kg.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

1. Data Analysis Use only the sunspot numbers for the following.

a. Find the mean, median, range, standard deviation, and variance.

b. Are the sunspot numbers categorical data or quantitative data?

c. What is the level of measurement of the data? (nominal, ordinal, interval, ratio)

Interpreting\({R^2}\)In Exercise 2, the quadratic model results in = 0.255. Identify the percentage of the variation in Super Bowl points that can be explained by the quadratic model relating the variable of year and the variable of points scored. (Hint: See Example 2.) What does the result suggest about the usefulness of the quadratic model?

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Repeat the preceding exercise, assuming that the linear correlation coefficient is r= 0.997.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

POTUS Media periodically discuss the issue of heights of winning presidential candidates and heights of their main opponents. Listed below are those heights (cm) from severalrecent presidential elections (from Data Set 15 “Presidents” in Appendix B). Is there sufficient evidence to conclude that there is a linear correlation between heights of winning presidential candidates and heights of their main opponents? Should there be such a correlation?

President

178

182

188

175

179

183

192

182

177

185

188

188

183

188

Opponent

180

180

182

173

178

182

180

180

183

177

173

188

185

175

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Correlation Use a 0.05 significance level to test for a linear correlation between the DJIA values and the sunspot numbers. Is the result as you expected? Should anyone consider investing in stocks based on sunspot numbers?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free