In Exercises 5–8, use a significance level 0.05 and refer to theaccompanying displays.Cereal Killers The amounts of sugar (grams of sugar per gram of cereal) and calories (per gram of cereal) were recorded for a sample of 16 different cereals. TI-83>84 Plus calculator results are shown here. Is there sufficient evidence to support the claim that there is a linear correlation between sugar and calories in a gram of cereal? Explain.

Short Answer

Expert verified

There is enough evidence to support the claim that there exists a linear correlation between the two variables, sugar content and calories of the cereals.

Step by step solution

01

Given information

Two variables are being studied:the amount of sugar (grams of sugar per gram of cereal), and calories (per gram of cereal).

The sample size of cereals is 16(n).

The output gives the correlation coefficient as 0.7654038409.

02

Conduct a hypothesis test for correlation

Let\(\rho \)be the true correlation coefficient measure for the amount of sugar and calories.

For testing the claim, form the hypotheses as shown:

\(\begin{array}{l}{{\rm{H}}_{\rm{o}}}:\rho = 0\\{{\rm{{\rm H}}}_{\rm{a}}}:\rho \ne 0\end{array}\)

The samples number of cereals is16(n).

The test statistic is computedbelow:

\(\begin{aligned} t &= \frac{r}{{\sqrt {\frac{{1 - {r^2}}}{{n - 2}}} }}\\ &= \frac{{0.7654038409}}{{\sqrt {\frac{{1 - {{0.7654038409}^2}}}{{16 - 2}}} }}\\ &= 4.4501\end{aligned}\)

Thus, the test statistic is 4.450.

The degree of freedom is computedbelow:

\(\begin{aligned} df &= n - 2\\ &= 16 - 2\\ &= 14\end{aligned}\)

The p-value is computed using thet-distribution table.

\(\begin{aligned} p{\rm{ - value}} &= P\left( {T > t} \right)\\ &= 2P\left( {T > 4.4501} \right)\\ &= 2\left( {1 - P\left( {T < 4.4501} \right)} \right)\\ &= 0.0005\end{aligned}\)

Thus, the p-value is 0.0005.

03

State the conclusion

Since the p-value is lesser than 0.05, the null hypothesis is rejected.

Thus, there is enough evidence to support theexistence of a linear association between the amount of sugar (grams of sugarper gram of cereal)and calories (per gram of cereal).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Internet and Nobel Laureates Listed below are numbers of Internet users per 100 people and numbers of Nobel Laureates per 10 million people (from Data Set 16 “Nobel Laureates and Chocolate” in Appendix B) for different countries. Is there sufficient evidence to conclude that there is a linear correlation between Internet users and Nobel Laureates?

Internet Users

Nobel Laureates

79.5

5.5

79.6

9

56.8

3.3

67.6

1.7

77.9

10.8

38.3

0.1

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the foot lengths and heights to find the best predicted height of a male

who has a foot length of 28 cm. Would the result be helpful to police crime scene investigators in trying to describe the male?

What is the difference between the regression equation\(\hat y = {b_0} + {b_1}x\)and the regression equation\(y = {\beta _0} + {\beta _1}x\)?

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Correlation Use a 0.05 significance level to test for a linear correlation between the DJIA values and the sunspot numbers. Is the result as you expected? Should anyone consider investing in stocks based on sunspot numbers?

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

For 50 randomly selected speed dates, attractiveness ratings by males of their

female date partners (x) are recorded along with the attractiveness ratings by females of their male date partners (y); the ratings are from Data Set 18 “Speed Dating” in Appendix B. The 50 paired ratings yield\(\bar x = 6.5\),\(\bar y = 5.9\), r= -0.277, P-value = 0.051, and\(\hat y = 8.18 - 0.345x\). Find the best predicted value of\(\hat y\)(attractiveness rating by female of male) for a date in which the attractiveness rating by the male of the female is x= 8.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free