In Exercises 9–12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi/gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi/gal).

If only one predictor (x) variable is used to predict the city fuel consumption, which single variable is best? Why?

Short Answer

Expert verified

HWY is the best predictor in the single variable study for predicting fuel consumption of the city.

Step by step solution

01

Given information

The table represents the predictor variables, P-value, \({R^2}\), Adjusted-\({R^2}\) and the regression equations.

02

State the criteria for best predictor variables

The p-value determines the significance of the variable in regression analysis. The R-squared measure is the coefficient of determination measure, which measures the sum of squares explained by the regression line.The R-squared adjusted measures the accuracy while considering the count of independent variables in the model. A good-fit model gives a better prediction.

The optimum level of each measure defines the best predictor in the regression model.

03

Identify the best predictor model

From the provided three models with one predictor variable, the model with predictor HWY (highway fuel consumption) has the:

  • smallest P-value is 0.000
  • highest measures of both\({R^2}\)and adjusted\({R^2}\)value which is 0.924 and 0.920 respectively.

This implies that HWY is the best predictor of the city’s fuel consumption variable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9 and 10, use the given data to find the equation of the regression line. Examine the scatterplot and identify a characteristic of the data that is ignored by the regression line.

Interpreting the Coefficient of Determination. In Exercises 5–8, use the value of the linear correlation coefficient r to find the coefficient of determination and the percentage of the total variation that can be explained by the linear relationship between the two variables.

Crickets and Temperature r = 0.874 (x = number of cricket chirps in 1 minute, y = temperature in °F)

In Exercises 5–8, we want to consider the correlation between heights of fathers and mothers and the heights of their sons. Refer to the

StatCrunch display and answer the given questions or identify the indicated items.

The display is based on Data Set 5 “Family Heights” in Appendix B.

Identify the following:

a. The P-value corresponding to the overall significance of the multiple regression equation

b. The value of the multiple coefficient of determination\({R^2}\).

c. The adjusted value of \({R^2}\)

Interpreting r. In Exercises 5–8, use a significance level of A = 0.05 and refer to the accompanying displays.

5. Bear Weight and Chest Size Fifty-four wild bears were anesthetized, and then their weights and chest sizes were measured and listed in Data Set 9 “Bear Measurements” in Appendix B; results are shown in the accompanying Statdisk display. Is there sufficient evidence to support the claim that there is a linear correlation between the weights of bears and their chest sizes? When measuring an anesthetized bear, is it easier to measure chest size than weight? If so, does it appear that a measured chest size can be used to predict the weight?

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed lemon/crash data, find the best predicted crash fatality rate for a year in which there are 500 metric tons of lemon imports. Is the prediction worthwhile?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free