Where \({\bf{P}}\left( {\bf{x}} \right){\bf{ = - }}\frac{{\bf{1}}}{{{{\bf{x}}^{\bf{2}}}}}\) and \({\bf{Q}}\left( {\bf{x}} \right){\bf{ = - }}\frac{{{\bf{sin}}\;{\bf{x}}}}{{{{\bf{x}}^{\bf{2}}}}}\).
\(\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ = - }}\frac{{{\bf{sin}}\;{\bf{x}}}}{{{{\bf{x}}^{\bf{2}}}}}{\bf{ + }}\frac{{\bf{y}}}{{{{\bf{x}}^{\bf{2}}}}}\)
So, the given equation is linear and the referring to evaluation the equation of right-hand side we can’t found any product of function which depends only on x and function which depends only on y, so this equation is not separable.
Hence the given equation is linear.