Solve the initial value problem. \[\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ = }}{{\bf{x}}^{\bf{2}}}\left( {{\bf{1 + y}}} \right){\bf{,}}\,\,\,\,\,\,\,\,\,\,\,\,{\bf{y}}\left( {\bf{0}} \right){\bf{ = 3}}\]

Short Answer

Expert verified

\[{\bf{y = 4}}{{\bf{e}}^{\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}}}{\bf{ - 1}}\]

Step by step solution

01

Cross multiplication for simplification

Given \(\frac{{{\bf{dy}}}}{{{\bf{dx}}\,}}{\bf{ = }}{{\bf{x}}^{\bf{2}}}\left( {{\bf{1 + y}}} \right)\, \cdot \cdot \cdot \cdot \cdot \cdot \left( {\bf{1}} \right)\)

Cross multiplication on both sides in the equation \(\left( 1 \right)\)

\[\frac{{{\bf{dy}}}}{{{\bf{1 + y}}}}{\bf{ = }}{{\bf{x}}^{\bf{2}}}\;{\bf{dx}}\,\,\]

02

Step 2:Integration

Taking integration of both sides in the above equation

\(\int {\frac{{\bf{1}}}{{{\bf{1 + y}}}}} {\bf{dy = }}\int {{{\bf{x}}^{\bf{2}}}} \;{\bf{dx}}\,\,\)

Solve the above equation,

\[{\bf{ln}}\left( {{\bf{1 + y}}} \right){\bf{ = }}\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}{\bf{ + c}}\, \cdot \cdot \cdot \cdot \cdot \cdot \left( {\bf{2}} \right)\]

Here c is the integration constant.

03

Step 3:Substitution of\({\bf{y}}\left( {\bf{0}} \right){\bf{ = 3}}\)in the equation

Substituting\(y\left( 0 \right) = 3\)in the equation\(\left( 2 \right)\)

\(\)\[\begin{array}{c}{\bf{ln}}\left( {{\bf{1 + 3}}} \right){\bf{ = }}\frac{{{{\left( {\bf{0}} \right)}^{\bf{3}}}}}{{\bf{3}}}{\bf{ + c}}\,\\{\bf{ln}}\left( {\bf{4}} \right){\bf{ = c}}\,\,\,\,\end{array}\]

Put the value of c in the equation\(\left( 2 \right)\)

\[{\bf{ln}}\left( {{\bf{1 + y}}} \right){\bf{ = }}\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}{\bf{ + ln}}\left( {\bf{4}} \right)\]

Simplify the above equation,

\[\begin{array}{c}{\bf{ln}}\left( {{\bf{1 + y}}} \right){\bf{ = }}\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}{\bf{ + ln}}\left( {\bf{4}} \right)\\{\bf{ln}}\left( {{\bf{1 + y}}} \right){\bf{ - ln}}\left( {\bf{4}} \right){\bf{ = }}\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}\\{\bf{ln}}\left( {\frac{{{\bf{1 + y}}}}{{\bf{4}}}} \right){\bf{ = }}\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}\\\frac{{{\bf{1 + y}}}}{{\bf{4}}}{\bf{ = }}{{\bf{e}}^{\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}}}\\{\bf{y + 1 = 4}}{{\bf{e}}^{\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}}}\\{\bf{y = 4}}{{\bf{e}}^{\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}}}{\bf{ - 1}}\end{array}\]

Hence the solution is\[{\bf{y = 4}}{{\bf{e}}^{\frac{{{{\bf{x}}^{\bf{3}}}}}{{\bf{3}}}}}{\bf{ - 1}}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free