Suppose a brine containing 0.3 kilogram (kg) of salt per litter (L) runs into a tank initially filled with 400 L of water containing 2 kg of salt. If the brine enters at 10 L/min. the mixture is kept uniform by stirring, and the mixture flows out at the same rate. Find the mass of salt in the tank after 10 min.

Short Answer

Expert verified

\({\bf{28}}{\bf{.1}}\;\;{\bf{kg}}\)

Step by step solution

01

Step 1:Using the above given graph

Use the fact,

rate of increase in A = rate of input - rate of exit.

Let x(t) is amount of salt at time in kg.

\(\begin{array}{c}{\bf{x'}}\left( {\bf{t}} \right){\bf{ = 3 - }}\left( {\frac{{{\bf{x}}\left( {\bf{t}} \right)}}{{{\bf{400}}}}} \right)\left( {{\bf{10}}} \right)\\{\bf{x'}}\left( {\bf{t}} \right){\bf{ = 3 - }}\frac{{{\bf{x}}\left( {\bf{t}} \right)}}{{{\bf{40}}}}\\{\bf{x'}}\left( {\bf{t}} \right){\bf{ = }}\frac{{{\bf{ - 1}}}}{{{\bf{40}}}}\left( {{\bf{x}}\left( {\bf{t}} \right){\bf{ - 120}}} \right)\, \cdot \cdot \cdot \cdot \cdot \cdot \left( {\bf{1}} \right)\end{array}\)

Cross multiplication on both sides in the equation \(\left( 1 \right)\)

\(\frac{{{\bf{x'}}\left( {\bf{t}} \right)}}{{\left( {{\bf{x}}\left( {\bf{t}} \right){\bf{ - 120}}} \right)}}{\bf{ = }}\frac{{{\bf{ - 1}}}}{{{\bf{40}}}}\,\,\)

02

Step 2: Integrating

Taking integration both sides in the above equation

\(\int {\frac{{{\bf{x'}}\left( {\bf{t}} \right)}}{{\left( {{\bf{x}}\left( {\bf{t}} \right){\bf{ - 120}}} \right)}}} {\bf{dt = }}\int {\frac{{{\bf{ - 1}}}}{{{\bf{40}}}}{\bf{dt}}\,} \)

Solve the above equation,

\(\begin{array}{l}{\bf{ln}}\left( {{\bf{x}}\left( {\bf{t}} \right){\bf{ - 120}}} \right){\bf{ = }}\frac{{{\bf{ - t}}}}{{{\bf{40}}}}{\bf{ + c}}\\{\bf{x}}\left( {\bf{t}} \right){\bf{ - 120 = }}{{\bf{c}}_{\bf{1}}}{{\bf{e}}^{\frac{{{\bf{ - t}}}}{{{\bf{40}}}}}}\\{\bf{x}}\left( {\bf{t}} \right){\bf{ = }}{{\bf{c}}_{\bf{1}}}{{\bf{e}}^{\frac{{{\bf{ - t}}}}{{{\bf{40}}}}}}{\bf{ + 120}}\, \cdot \cdot \cdot \cdot \cdot \cdot \left( {\bf{2}} \right)\end{array}\)

Here c is the integration constant.

Substituting t = 0 in the equation\(\left( 2 \right)\)

\({\bf{x}}\left( {\bf{0}} \right){\bf{ = }}{{\bf{c}}_{\bf{1}}}{{\bf{e}}^{\frac{{{\bf{ - 0}}}}{{{\bf{40}}}}}}{\bf{ + 120}}\,\,\)

Here, given\(x\left( 0 \right) = 2kg\)

\(\begin{array}{c}{\bf{2 = }}{{\bf{c}}_{\bf{1}}}{\bf{ + 120}}\,\\{{\bf{c}}_{\bf{1}}}{\bf{ = - 118}}\end{array}\)

Substituting\({{\bf{c}}_{\bf{1}}}{\bf{ = - 118}}\)in the equation\(\left( 2 \right)\)

\(\begin{array}{l}{\bf{x}}\left( {\bf{t}} \right){\bf{ = - 118}}{{\bf{e}}^{\frac{{{\bf{ - t}}}}{{{\bf{40}}}}}}{\bf{ + 120}}\,\\{\bf{x}}\left( {\bf{t}} \right){\bf{ = 120 - 118}}{{\bf{e}}^{\frac{{{\bf{ - t}}}}{{{\bf{40}}}}}} \cdot \cdot \cdot \cdot \cdot \cdot \left( {\bf{3}} \right)\end{array}\)

03

Step 3:Finding the mass of salt in the tank after 10 min

Substituting t = 10 in the equation\(\left( 3 \right)\)

\({\bf{x}}\left( {{\bf{10}}} \right){\bf{ = 120 - 118}}{{\bf{e}}^{\frac{{{\bf{ - 10}}}}{{{\bf{40}}}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\)

Simplify the above equation,

\(\begin{array}{c}{\bf{x}}\left( {{\bf{10}}} \right){\bf{ = 120 - 118}}\left( {{\bf{0}}{\bf{.7788}}} \right)\\{\bf{ = 28}}{\bf{.1016}}\;{\bf{kg}}\end{array}\)

\({\bf{x}}\left( {{\bf{10}}} \right){\bf{ = 28}}{\bf{.1}}\;{\bf{kg}}\)

Hence,the mass of salt in the tank after 10 min is 28.1 kg.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free