In Problems \(1 - 6\), determine whether the given equation is separable, linear, neither, or both.

\(\left( {{{\bf{t}}^{\bf{2}}}{\bf{ + 1}}} \right)\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = yt - y}}\).

Short Answer

Expert verified

The given equation is both linear and separable.

Step by step solution

01

General form of separable and linear equations

Separable equation: A first-order equation is separable if it can be written in the form \(\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ = g}}\left( {\bf{x}} \right){\bf{p}}\left( {\bf{y}} \right)\).

Linear equation: A first-order equation is linear if it can be written in the form\(\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ + P}}\left( {\bf{x}} \right){\bf{y = Q}}\left( {\bf{x}} \right)\).

02

Evaluate the given equation

Given that, \(\left( {{{\bf{t}}^{\bf{2}}}{\bf{ + 1}}} \right)\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = yt - y}} \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)\)

Evaluative the given equation is separable or linear.

Case (1):

\(\begin{array}{c}\left( {{{\bf{t}}^{\bf{2}}}{\bf{ + 1}}} \right)\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = yt - y}}\\\left( {{{\bf{t}}^{\bf{2}}}{\bf{ + 1}}} \right)\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = y}}\left( {{\bf{t - 1}}} \right)\\\left( {{{\bf{t}}^{\bf{2}}}{\bf{ + 1}}} \right)\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ - y}}\left( {{\bf{t - 1}}} \right){\bf{ = 0}}\\\left( {{{\bf{t}}^{\bf{2}}}{\bf{ + 1}}} \right)\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ + y}}\left( {{\bf{ - t + 1}}} \right){\bf{ = 0}}\end{array}\)

03

Identifying method

Case (2):

\(\begin{array}{c}\left( {{{\bf{t}}^{\bf{2}}}{\bf{ + 1}}} \right)\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = y}}\left( {{\bf{t - 1}}} \right)\\\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = y}}\frac{{{\bf{t - 1}}}}{{{{\bf{t}}^{\bf{2}}}{\bf{ + 1}}}}\end{array}\)

Where referring to case (1) and (2). We found that the given equation is linear and separable.

Hence, the given equation is both linear and separable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free