Find a system of differential equations and initial conditions for the currents in the networks given in the schematic diagrams (Figures \({\bf{5}}{\bf{.39 - 5}}{\bf{.42}}\) on pages\({\bf{294 - 295}}\)). Assume that all initial currents are zero. Solve for the currents in each branch of the network.

Short Answer

Expert verified

The currents in the given network are:

\(\begin{aligned}{c}{{\bf{I}}_{\bf{1}}}{\bf{(t) = - }}\frac{{\bf{5}}}{{\bf{2}}}{{\bf{e}}^{{\bf{ - 2t}}}}{\bf{ - }}\frac{{{\bf{45}}}}{{\bf{2}}}{{\bf{e}}^{{\bf{ - 2t/3}}}}{\bf{ + 25}}\\{{\bf{I}}_{\bf{2}}}{\bf{(t) = }}\frac{{\bf{5}}}{{\bf{2}}}{{\bf{e}}^{{\bf{ - 2t}}}}{\bf{ - }}\frac{{{\bf{15}}}}{{\bf{2}}}{{\bf{e}}^{{\bf{ - 2t/3}}}}{\bf{ + 5}}\\{{\bf{I}}_{\bf{3}}}{\bf{(t) = - 5}}{{\bf{e}}^{{\bf{ - 2t}}}}{\bf{ - 15}}{{\bf{e}}^{{\bf{ - 2t/3}}}}{\bf{ + 20}}\end{aligned}\)

Step by step solution

01

Applying Kirchhoff’s law

One has that \({L_1} = 10H,{L_2} = 30H,{R_1} = 10\Omega ,{R_2} = 40\Omega \) and\(E\left( t \right) = 20\;V\). Applying Kirchhoff's voltage law on the first loop one will get\(E\left( t \right) = {L_1}\frac{{d{I_1}}}{{dt}} + {R_1}{I_3}\)and from the second loop, one has that\(0 = {L_2}\frac{{d{I_2}}}{{dt}} + {R_2}{I_2} - {R_1}{I_3}\).

Applying Kirchhoff's current law at the point \(A\)one will get \(0 = {I_1} - {I_2} - {I_3}\) and the point \(B\) gives us that\(0 = - {I_1} + {I_2} + {I_3}\), so in both cases, one has that

\({I_1} = {I_2} + {I_3}\)

02

Expressing the values of \({\bf{I}}\)

One has to solve the following system:

\(\begin{aligned}{c}E\left( t \right) &= {L_1}\frac{{d{I_1}}}{{dt}} + {R_1}{I_3}\\0 &= {L_2}\frac{{d{I_2}}}{{dt}} + {R_2}{I_2} - {R_1}{I_3}\\{I_1} &= {I_2} + {I_3}\end{aligned}\)

Expressing \({I_1}\) in terms of \({I_2}\) and \({I_3}\) in the first two equations of the system one will get

\(\begin{aligned}{c}E\left( t \right) &= {L_1}\frac{{d{I_2}}}{{dt}} + {L_1}\frac{{d{I_3}}}{{dt}} + {R_1}{I_3},\\0 &= {L_2}\frac{{d{I_2}}}{{dt}} + {R_2}{I_2} - {R_1}{I_3}\end{aligned}\)

03

Substituting the values of\({\bf{E}}\),\({{\bf{L}}_{\bf{1}}}\),\({{\bf{L}}_{\bf{2}}}\), \({{\bf{R}}_{\bf{1}}}\)and \({{\bf{R}}_{\bf{2}}}\)

Substituting the values for\(E,\,{L_1},\,{L_2},\,{R_1}\,{\rm{and}}\,{R_2}\) our system becomes

\(\begin{aligned}{c}20 = 10\frac{{d{I_2}}}{{dt}} + 10\frac{{d{I_3}}}{{dt}} + 10{I_3}\\0 &= 30\frac{{d{I_2}}}{{dt}} + 40{I_2} - 10{I_3}\end{aligned}\)

Dividing both equations by \(10\)one will get

\(\begin{aligned}{c}2 &= \frac{{d{I_2}}}{{dt}} + \frac{{d{I_3}}}{{dt}} + {I_3}\\0 &= 3\frac{{d{I_2}}}{{dt}} + 4{I_2} - {I_3}\end{aligned}\)

04

Substituting the value of \({{\bf{I}}_{\bf{3}}}\)

One will solve this by the elimination method. First, one needs to rewrite the system in operator form:

\(\begin{aligned}{c}D\left( {{I_2}} \right) + \left( {D + 1} \right)\left( {{I_3}} \right) &= 20\\\left( {3D + 4} \right)\left( {{I_2}} \right) - {I_3} &= 0\end{aligned}\)

From the second equation one has that\({I_3} = \left( {3D + 4} \right)\left( {{I_2}} \right)\), so substituting this into the first equation one has

\(\begin{aligned}{c}D\left( {{I_2}} \right) + \left( {D + 1} \right)\left( {3D + 4} \right)\left( {{I_2}} \right) &= 20\\\left( {3{D^2} + 8D + 4} \right)\left( {{I_2}} \right) &= 20\end{aligned}\)

05

Using the method of undetermined coefficients 

First, one can find a homogeneous solution. The auxiliary equation is \(3{r^2} + 8r + 4 = 0\) and its roots are:

\(\begin{aligned}{c}{r_{1,2}} &= \frac{{ - 8 \pm \sqrt {64 - 48} }}{6}\\ &= \frac{{ - 8 \pm 4}}{6}\\{r_1} &= - 2\\{r_2} = - \frac{2}{3}\end{aligned}\)

So, the homogeneous solution for \({I_2}\) is\({I_{{2_h}}}\left( t \right) = {c_1}{e^{ - 2t}} + {c_2}{e^{\frac{{ - 2t}}{3}}}\)

One can find a particular solution by the method of undetermined coefficients. Assume that\({I_{{2_p}}}\left( t \right) = A\). Then

\(\begin{aligned}{c}{I_{{2_p}}}'\left( t \right) &= 0,{I_{{2_p}}}\\''\left( t \right) &= 0\end{aligned}\).

06

Finding the value of \({{\bf{I}}_{\bf{3}}}\)

Substituting that in the differential equation one has that

\(\begin{aligned}{c}\left( {3{D^2} + 8D + 4} \right)\left( {{I_{{2_p}}}} \right) &= 0 + 0 + 4\\A = 4A &= 20\\A = 5\end{aligned}\)

So, the particular solution is \({I_{{2_p}}}\left( t \right) = 5\) and the general solution for \({I_2}\) is\({I_2}\left( t \right) = {I_{{2_h}}}\left( t \right) + {I_{{2_p}}}\left( t \right) = {c_1}{e^{ - 2t}} + {c_2}{e^{\frac{{ - 2t}}{3}}} + 5\)

The current \({I_3}\) can be derived from\({I_3} = \left( {3D + 4} \right)\left( {{I_2}} \right)\), so, one will first find the first derivative of \({I_2}\)and then use it to find\({I_3}\).

\(\begin{aligned}{c}D\left( {{I_2}} \right) &= - 2{c_1}{e^{ - 2t}} - \frac{2}{3}{c_2}{e^{\frac{{ - 2t}}{3}}}\\{I_3}\left( t \right) &= 3D\left( {{I_2}\left( t \right)} \right) + 4\left( {{I_2}\left( t \right)} \right)\\ &= 3\left( { - 2{c_1}{e^{ - 2t}} - \frac{2}{3}{c_2}{e^{\frac{{ - 2t}}{3}}}} \right) + 4\left( {{c_1}{e^{ - 2t}} + {c_2}{e^{\frac{{ - 2t}}{3}}} + 5} \right)\\ &= - 6{c_1}{e^{ - 2t}} - 2{c_2}{e^{\frac{{ - 2t}}{3}}} + 4{c_1}{e^{ - 2t}} + 4{c_2}{e^{\frac{{ - 2t}}{3}}} + 20\end{aligned}\)

\( \Rightarrow {I_3}\left( t \right) = - 2{c_1}{e^{ - 2t}} + 2{c_2}{e^{\frac{{ - 2t}}{3}}} + 20\)

07

Finding the values of\({{\bf{c}}_{\bf{1}}}\), \({{\bf{c}}_{\bf{2}}}\)

Finally, one will find \({I_1}\left( t \right)\)from\({I_1}\left( t \right) = {I_2}\left( t \right) + {I_3}\left( t \right)\):

\(\begin{aligned}{c}{I_1}\left( t \right) &= {c_1}{e^{ - 2t}} + {c_2}{e^{\frac{{ - 2t}}{3}}} + 5 - 2{c_1}{e^{ - 2t}} + 2{c_2}{e^{\frac{{ - 2t}}{3}}} + 20\\{I_1}\left( t \right) = - {c_1}{e^{ - 2t}} + 3{c_2}{e^{\frac{{ - 2t}}{3}}} + 25\end{aligned}\)

One will find the constant \({c_1}\) and \({c_2}\) from the initial conditions which are

\({I_1}\left( 0 \right) = {I_2}\left( 0 \right) = {I_3}\left( 0 \right) = 0\), so, one has a system

\(\begin{aligned}{c}{I_1}\left( 0 \right) &= - {c_1} + 3{c_2} + 25\\ &= 0\end{aligned}\)

\(\begin{aligned}{c}{I_2}\left( 0 \right) &= {c_1} + {c_2} + 5\\ &= 0\end{aligned}\)

\(\begin{aligned}{c}{I_3}\left( 0 \right) &= - 2{c_1} + 2{c_2} + 20\\ &= 0\end{aligned}\)

08

Adding the first and second equations

Adding the first and the second equation of the system one gets that\(4{c_2} + 30 = 0\), so\({c_2} = - \frac{{15}}{2}\). Substituting the value for \({c_2}\) in any of the equations of the system one will get that\({c_1} = \frac{5}{2}\), so the currents in the given network are:

\(\begin{aligned}{c}{{\bf{I}}_{\bf{1}}}\left( {\bf{t}} \right){\bf{ = - }}\frac{{\bf{5}}}{{\bf{2}}}{{\bf{e}}^{{\bf{ - 2t}}}}{\bf{ - }}\frac{{{\bf{45}}}}{{\bf{2}}}{{\bf{e}}^{\frac{{{\bf{ - 2t}}}}{{\bf{3}}}}}{\bf{ + 25}}\\{{\bf{I}}_{\bf{2}}}\left( {\bf{t}} \right){\bf{ = }}\frac{{\bf{5}}}{{\bf{2}}}{{\bf{e}}^{{\bf{ - 2t}}}}{\bf{ - }}\frac{{{\bf{15}}}}{{\bf{2}}}{{\bf{e}}^{\frac{{{\bf{ - 2t}}}}{{\bf{3}}}}}{\bf{ + 5}}\\{{\bf{I}}_{\bf{3}}}\left( {\bf{t}} \right){\bf{ = - 5}}{{\bf{e}}^{{\bf{ - 2t}}}}{\bf{ - 15}}{{\bf{e}}^{\frac{{{\bf{ - 2t}}}}{{\bf{3}}}}}{\bf{ + 20}}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Problems 15–18, find all critical points for the given system. Then use a software package to sketch the direction field in the phase plane and from this description the stability of the critical points (i.e., compare with Figure 5.12).

dxdt=-5x+2y,dydt=x-4y

Generalized Blasius Equation. H. Blasius, in his study of the laminar flow of a fluid, encountered an equation of the form y'''+yy''=(y')2-1. Use the Runge–Kutta algorithm for systems with h = 0.1 to approximate the solution that satisfies the initial conditions y(0)=0,y'(0)=0,y''(0)=1.32824. Sketch this solution on the interval [0, 2].

Use the Runge–Kutta algorithm for systems with h= 0.1 to approximate the solution to the initial value problem.

x'=yz;x(0)=0,y'=-xz;y(0)=1,z'=-xy2;z(0)=1,

At t=1.

The doubling modulo \({\bf{1}}\) map defined by the equation \(\left( {\bf{9}} \right)\)exhibits some fascinating behavior. Compute the sequence obtained when

  1. \({{\bf{x}}_0}{\bf{ = k / 7}}\)for\({\bf{k = 1,2, \ldots ,6}}\).
  2. \({{\bf{x}}_0}{\bf{ = k / 15}}\)for\({\bf{k = 1,2, \ldots ,14}}\).
  3. \({{\bf{x}}_{\bf{0}}}{\bf{ = k/}}{{\bf{2}}^{\bf{j}}}\), where \({\bf{j}}\)is a positive integer and \({\bf{k = 1,2, \ldots ,}}{{\bf{2}}^{\bf{j}}}{\bf{ - 1}}{\bf{.}}\)

Numbers of the form \({\bf{k/}}{{\bf{2}}^{\bf{j}}}\) are called dyadic numbers and are dense in \(\left( {{\bf{0,1}}} \right){\bf{.}}\)That is, there is a dyadic number arbitrarily close to any real number (rational or irrational).

In Problems 15–18, find all critical points for the given system. Then use a software package to sketch the direction field in the phase plane and from this description the stability of the critical points (i.e., compare with Figure 5.12).

dxdt=2x+13y,dydt=-x-2y

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free