Find a system of differential equations and initial conditions for the currents in the networks given in the schematic diagrams (Figures \({\bf{5}}{\bf{.39 - 5}}{\bf{.42}}\) on pages \({\bf{294 - 295}}\)). Assume that all initial currents are zero. Solve for the currents in each branch of the network.

Short Answer

Expert verified

The currents in the given network are:

\(\begin{aligned}{l}{{\bf{I}}_{\bf{1}}}{\bf{(t) = - }}\frac{{{\bf{36}}}}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{cos}}\sqrt {\bf{3}} {\bf{t - }}\frac{{{\bf{42}}\sqrt {\bf{3}} }}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{sin}}\sqrt {\bf{3}} {\bf{t + }}\frac{{{\bf{36}}}}{{{\bf{61}}}}{\bf{cos3t + }}\frac{{{\bf{30}}}}{{{\bf{61}}}}{\bf{sin3t}}\\{{\bf{I}}_{\bf{2}}}{\bf{(t) = }}\frac{{{\bf{45}}}}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{cos}}\sqrt {\bf{3}} {\bf{t - }}\frac{{{\bf{39}}\sqrt {\bf{3}} }}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{sin}}\sqrt {\bf{3}} {\bf{t - }}\frac{{{\bf{45}}}}{{{\bf{61}}}}{\bf{cos3t + }}\frac{{{\bf{54}}}}{{{\bf{61}}}}{\bf{sin3t}}\\{{\bf{I}}_{\bf{3}}}{\bf{(t) = - }}\frac{{{\bf{81}}}}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{cos}}\sqrt {\bf{3}} {\bf{t - }}\frac{{{\bf{3}}\sqrt {\bf{3}} }}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{sin}}\sqrt {\bf{3}} {\bf{t + }}\frac{{{\bf{81}}}}{{{\bf{61}}}}{\bf{cos3t - }}\frac{{{\bf{24}}}}{{{\bf{61}}}}{\bf{sin3t}}\end{aligned}\)

Step by step solution

01

Applying Kirchhoff’s law

One has that\(L = 0.5H,C = 0.5\;F,R = 1\Omega \), and\(E\left( t \right) = \cos 3t\;V\).

Applying Kirchhoff's voltage law on the first loop one will get\(0 = L\frac{{d{I_1}}}{{dt}} + R{I_2}\)and from the second loop we have that\(E\left( t \right) = - R{I_2} + \frac{1}{C}{q_3}\)

Applying Kirchhoff's current law at the point \(A\)one will get \(0 = - {I_1} + {I_2} + {I_3}\) and the point \(B\)gives us that\(0 = {I_1} - {I_2} - {I_3}\), so in both cases, one has that\({I_1} = {I_2} + {I_3}\)

02

Expressing the value of \({{\bf{I}}_{\bf{p}}}\)

So, one has to solve the following system:

\(\begin{aligned}{c}0 = L\frac{{d{I_1}}}{{dt}} + R{I_2}\\E\left( t \right) = - R{I_2} + \frac{1}{C}{q_3}\\{I_1} = {I_2} + {I_3}\end{aligned}\)

Expressing \({I_1}\) in terms of \({I_2}\) and \({I_3}\) in the first two equations of the system one will get

\(\begin{aligned}{c}0 = L\frac{{d{I_2}}}{{dt}} + L\frac{{d{I_3}}}{{dt}} + R{I_2}\\E\left( t \right) = - R{I_2} + \frac{1}{C}{q_3}\end{aligned}\)

Also, one can express\({I_i} = \frac{{d{q_i}}}{{dt}},i = \overline {1,3} \), so one has

\(\begin{aligned}{c}0 = L\frac{{{d^2}{q_2}}}{{d{t^2}}} + L\frac{{{d^2}{q_3}}}{{d{t^2}}} + R\frac{{d{q_2}}}{{dt}}\\E\left( t \right) = - R\frac{{d{q_2}}}{{dt}} + \frac{1}{C}{q_3}\end{aligned}\)

03

Substituting the values of \({\bf{E,L,R,C}}\)

Substituting the values for\(E\),\(L\),\(R\), \(C\) our system becomes

\(\begin{aligned}{c}0.5\frac{{{d^2}{q_2}}}{{d{t^2}}} + 0.5\frac{{{d^2}{q_3}}}{{d{t^2}}} + \frac{{d{q_2}}}{{dt}} = 0\\ - \frac{{d{q_2}}}{{dt}} + 2{q_3} = \cos 3t\end{aligned}\)

Multiplying the first equation by \(2\)one will get

\(\begin{aligned}{c}\frac{{{d^2}{q_2}}}{{d{t^2}}} + \frac{{{d^2}{q_3}}}{{d{t^2}}} + 2\frac{{d{q_2}}}{{dt}} = 0\\ - \frac{{d{q_2}}}{{dt}} + 2{q_3} = \cos 3t\end{aligned}\)

04

Using the elimination method

One will solve this by the elimination method. First, it needs to rewrite the system in operator form:

\(\begin{aligned}{c}\left( {{D^2} + 2D} \right)\left( {{q_2}} \right) + {D^2}\left( {{q_3}} \right) = 0\\ - D\left( {{q_2}} \right) + 2\left( {{q_3}} \right) = \cos 3t\end{aligned}\)

Multiplying the second equation by \( - {D^2}\) and the first by \(2\) and then adding those two equations together one will get:

\(\begin{aligned}{c}2\left( {{D^2} + 2D} \right)\left( {{q_2}} \right) + 2{D^2}\left( {{q_3}} \right) = 0\\{D^3}\left( {{q_2}} \right) - 2{D^2}\left( {{q_3}} \right) = - {D^2}\left( {\cos 3t} \right)\\\left( {{D^3} + 2{D^2} + 4D} \right)\left( {{q_2}} \right) = - {D^2}\left( {\cos 3t} \right)\\\left( {{D^3} + 2{D^2} + 4D} \right)\left( {{q_2}} \right) = 9\cos 3t\end{aligned}\)

05

Finding the homogeneous solution

First, one can find a homogeneous solution. The auxiliary equation is \({r^3} + 2{r^2} + 4r = r\left( {{r^2} + 2r + 4} \right) = 0\) and its roots are\({r_{1,2}} = \frac{{ - 2 \pm \sqrt {4 - 16} }}{2} = - 1 \pm i\sqrt 3 ,\;\;\;{r_3} = 0\)

So, the homogeneous solution for \({q_2}\) is\({q_{{2_h}}}\left( t \right) = {c_1}{e^{ - t}}\cos \sqrt 3 t + {c_2}{e^{ - t}}\sin \sqrt 3 t + {c_3}\)

One can find a particular solution by the method of undetermined coefficients. Assume that \({q_{{2_p}}}\left( t \right) = A\cos 3t + B\sin 3t\).

Then

\(\begin{aligned}{c}{q_{{2_p}}}'\left( t \right) = - 3A\sin 3t + 3B\cos 3t\\{q_{{2_p}}}''\left( t \right) = - 9A\cos 3t - 9B\sin 3t\\{q_{{2_p}}}'''\left( t \right) = 27A\sin 3t - 27B\cos 3t\end{aligned}\)

06

Substituting the values

Substituting that in the differential equation one has that

\(\begin{aligned}{c}\left( {{D^3} + 2{D^2} + 4D} \right)\left( {{q_{{2_p}}}} \right) = {q_{{2_p}}}'''\left( t \right) + 2{q_{{2_p}}}''\left( t \right) + 4{q_{{2_p}}}'\left( t \right)\\ = 27A\sin 3t - 27B\cos 3t - 18A\cos 3t - 18B\sin 3t - 12A\sin 3t + 12B\cos 3t\\ = \left( {15A - 18B} \right)\sin 3t + \left( { - 15B - 18A} \right)\cos 3t\\ = 9\cos 3t\end{aligned}\)

\( \Rightarrow 15A - 18B = 0,\;\;\; - 15B - 18A = 9\)

The first equation gives us that \(A = \frac{{6B}}{5}\), so substituting this into the second equation one will get\(A = - \frac{{18}}{{61}}\), and \(B = - \frac{{15}}{{61}}\)

So now one has that the particular solution for \({q_2}\) is\({q_{{2_p}}}\left( t \right) = - \frac{{18}}{{61}}\cos 3t - \frac{{15}}{{61}}\sin 3t\)and the general solution for \({q_2}\) is\({q_2}(t) = {q_{{2_h}}}(t) + {q_{{2_p}}} = {c_1}{e^{ - t}}\cos \sqrt 3 t + {c_2}{e^{ - t}}\sin \sqrt 3 t + {c_3} - \frac{{18}}{{61}}\cos 3t - \frac{{15}}{{61}}\sin 3t\).

07

Finding the equation of current

But one needs to find an equation for the current, so one will differentiate \({q_2}\left( t \right)\) to obtain \({I_2}\)

\(\begin{aligned}{c}\frac{{dq}}{{dt}} = - {c_1}{e^{ - t}}\cos \sqrt 3 t - \sqrt 3 {c_1}{e^{ - t}}\sin \sqrt 3 t - {c_2}{e^{ - t}}\sin \sqrt 3 t + \sqrt 3 {c_2}{e^{ - t}}\cos \sqrt 3 t + \frac{{54}}{{61}}\sin 3t - \frac{{45}}{{61}}\cos 3t\\{I_2}\left( t \right) = \left( { - {c_1} + \sqrt 3 {c_2}} \right){e^{ - t}}\cos \sqrt 3 t - \left( {\sqrt 3 {c_1} + {c_2}} \right){e^{ - t}}\sin \sqrt 3 t + \frac{{54}}{{61}}\sin 3t - \frac{{45}}{{61}}\cos 3t\end{aligned}\)

One will find the charge \({q_3}\) from \( - D\left( {{q_2}} \right) + 2\left( {{q_3}} \right) = \cos 3t\)i.e., from \(2{q_3} = \cos 3t + {I_2}\):

\(\begin{aligned}{c}2{q_3}\left( t \right) = \cos 3t + \left( { - {c_1} + \sqrt 3 {c_2}} \right){e^{ - t}}\cos \sqrt 3 t - \left( {\sqrt 3 {c_1} + {c_2}} \right){e^{ - t}}\sin \sqrt 3 t + \frac{{54}}{{61}}\sin 3t - \frac{{45}}{{61}}\cos 3t\\ = \left( { - {c_1} + \sqrt 3 {c_2}} \right){e^{ - t}}\cos \sqrt 3 t - \left( {\sqrt 3 {c_1} + {c_2}} \right){e^{ - t}}\sin \sqrt 3 t + \frac{{54}}{{61}}\sin 3t + \frac{{16}}{{61}}\cos 3t\\{q_3}\left( t \right) = \frac{{ - {c_1} + \sqrt 3 {c_2}}}{2}{e^{ - t}}\cos \sqrt 3 t - \frac{{\sqrt 3 {c_1} + {c_2}}}{2}{e^{ - t}}\sin \sqrt 3 t + \frac{{27}}{{61}}\sin 3t + \frac{8}{{61}}\cos 3t\end{aligned}\)

08

Differentiating the values of \({{\bf{q}}_{\bf{3}}}\)

As before, one will differentiate \({q_3}\) to get the current \({I_3}\)

\(\begin{aligned}{c}\frac{{d{q_3}}}{{dt}} = \frac{{{c_1} - \sqrt 3 {c_2}}}{2}{e^{ - t}}\cos \sqrt 3 t + \frac{{\sqrt 3 {c_1} - 3{c_2}}}{2}{e^{ - t}}\sin \sqrt 3 t + \frac{{\sqrt 3 {c_1} + {c_2}}}{2}{e^{ - t}}\sin \sqrt 3 t\\ - \frac{{3{c_1} + \sqrt 3 {c_2}}}{2}{e^{ - t}}\cos \sqrt 3 t + \frac{{81}}{{61}}\cos 3t - \frac{{24}}{{61}}\sin 3t\\{I_3}\left( t \right) = - \left( {{c_1} + \sqrt 3 {c_2}} \right){e^{ - t}}\cos \sqrt 3 t + \left( {\sqrt 3 {c_1} - {c_2}} \right){e^{ - t}}\sin \sqrt 3 t + \frac{{81}}{{61}}\cos 3t - \frac{{24}}{{61}}\sin 3t\end{aligned}\)

Finally, one will find \({I_1}\left( t \right)\) from \({I_1}\left( t \right) = {I_2}\left( t \right) + {I_3}\left( t \right)\)

\(\begin{aligned}{c}{I_1}\left( t \right) = \left( { - {c_1} + \sqrt 3 {c_2}} \right){e^{ - t}}\cos \sqrt 3 t - \left( {\sqrt 3 {c_1} + {c_2}} \right){e^{ - t}}\sin \sqrt 3 t + \frac{{54}}{{61}}\sin 3t - \frac{{45}}{{61}}\cos 3t\\ = - \left( {{c_1} + \sqrt 3 {c_2}} \right){e^{ - t}}\cos \sqrt 3 t + \left( {\sqrt 3 {c_1} - {c_2}} \right){e^{ - t}}\sin \sqrt 3 t + \frac{{81}}{{61}}\cos 3t - \frac{{24}}{{61}}\sin 3t\\{I_1}\left( t \right) = - 2{c_1}{e^{ - t}}\cos \sqrt 3 t - 2{c_2}{e^{ - t}}\sin \sqrt 3 t + \frac{{36}}{{61}}\cos 3t + \frac{{30}}{{61}}\sin 3t\end{aligned}\)

09

Finding the currents

One will find the constant\({c_1}\), \({c_2}\) from the initial conditions which are\({I_1}\left( 0 \right) = {I_2}\left( 0 \right) = {I_3}\left( 0 \right) = 0\), so one has a system

\(\begin{aligned}{c}{I_1}\left( 0 \right) = - 2{c_1} + \frac{{36}}{{61}}\\ = 0\end{aligned}\)

\(\begin{aligned}{c}{I_2}\left( 0 \right) = - {c_1} + \sqrt 3 {c_2} - \frac{{45}}{{61}}\\ = 0\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free