Chapter 5: Q13E (page 303)
Find a system of differential equations and initial conditions for the currents in the networks given in the schematic diagrams (Figures \({\bf{5}}{\bf{.39 - 5}}{\bf{.42}}\) on pages \({\bf{294 - 295}}\)). Assume that all initial currents are zero. Solve for the currents in each branch of the network.
Short Answer
The currents in the given network are:
\(\begin{aligned}{l}{{\bf{I}}_{\bf{1}}}{\bf{(t) = - }}\frac{{{\bf{36}}}}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{cos}}\sqrt {\bf{3}} {\bf{t - }}\frac{{{\bf{42}}\sqrt {\bf{3}} }}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{sin}}\sqrt {\bf{3}} {\bf{t + }}\frac{{{\bf{36}}}}{{{\bf{61}}}}{\bf{cos3t + }}\frac{{{\bf{30}}}}{{{\bf{61}}}}{\bf{sin3t}}\\{{\bf{I}}_{\bf{2}}}{\bf{(t) = }}\frac{{{\bf{45}}}}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{cos}}\sqrt {\bf{3}} {\bf{t - }}\frac{{{\bf{39}}\sqrt {\bf{3}} }}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{sin}}\sqrt {\bf{3}} {\bf{t - }}\frac{{{\bf{45}}}}{{{\bf{61}}}}{\bf{cos3t + }}\frac{{{\bf{54}}}}{{{\bf{61}}}}{\bf{sin3t}}\\{{\bf{I}}_{\bf{3}}}{\bf{(t) = - }}\frac{{{\bf{81}}}}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{cos}}\sqrt {\bf{3}} {\bf{t - }}\frac{{{\bf{3}}\sqrt {\bf{3}} }}{{{\bf{61}}}}{{\bf{e}}^{{\bf{ - t}}}}{\bf{sin}}\sqrt {\bf{3}} {\bf{t + }}\frac{{{\bf{81}}}}{{{\bf{61}}}}{\bf{cos3t - }}\frac{{{\bf{24}}}}{{{\bf{61}}}}{\bf{sin3t}}\end{aligned}\)