Compute and graph the points of the Poincare map with \({\bf{t = 2\pi n,n = 0,1, \ldots ,20}}\)for equation (1), taking \({\bf{A = F = 1,f = 0,\omega = }}\frac{3}{2}\). Repeat, taking \({\bf{\omega = }}\frac{3}{5}\). Do you think the equation has a \({\bf{2\pi }}\)-periodic solution for either choice of \({\bf{\omega }}\)? A subharmonic solution?

Short Answer

Expert verified

For\({\bf{\omega = }}\frac{3}{2}\)a solution is subharmonic of period \({\bf{4\pi }}\)and it alternates between points \(\left( {\frac{{\bf{4}}}{{\bf{5}}}{\bf{,}}\frac{{\bf{3}}}{{\bf{2}}}} \right)\)and \(\left( {\frac{{\bf{4}}}{{\bf{5}}}{\bf{, - }}\frac{{\bf{3}}}{{\bf{2}}}} \right)\) for every step of\({\bf{2\pi }}\).

For \({\bf{\omega = }}\frac{3}{5}\)the Poincare map cycles through five points,

\(\begin{aligned}{*{20}{l}}{\left( {{\bf{ - 1}}{\bf{.5625,0}}{\bf{.6}}} \right){\bf{,}}\left( {{\bf{ - 2}}{\bf{.1503, - 0}}{\bf{.4854}}} \right){\bf{,}}\left( {{\bf{ - 0}}{\bf{.6114,0}}{\bf{.1854}}} \right){\bf{ }}}\\{\left( {{\bf{ - 2}}{\bf{.5136,0}}{\bf{.1854}}} \right){\bf{,}}\left( {{\bf{ - 0}}{\bf{.9747, - 0}}{\bf{.4854}}} \right)}\end{aligned}\)

And a solution is subharmonic of the period\({\bf{10\pi }}\).

Step by step solution

01

Defining \({{\bf{x}}_{\bf{n}}}\) and \({{\bf{v}}_{\bf{n}}}\)

The Poincare map for \({\bf{A = F = 1,f = 0}}\) and \({\bf{\omega = 3/2}}\)is given by:

\(\begin{aligned}{c}{{\bf{x}}_{\bf{n}}}{\bf{ = sin}}\left( {{\bf{2\pi \times }}\frac{{\bf{3}}}{{\bf{2}}}{\bf{n}}} \right){\bf{ + }}\frac{{\bf{1}}}{{{{{\bf{(3/2)}}}^{\bf{2}}}{\bf{ - 1}}}}\\{\bf{ = sin(3n\pi ) + }}\frac{{\bf{4}}}{{\bf{5}}}{\bf{, }}\\{{\bf{v}}_{\bf{n}}}{\bf{ = }}\frac{{\bf{3}}}{{\bf{2}}}{\bf{cos}}\left( {{\bf{2\pi \times }}\frac{{\bf{3}}}{{\bf{2}}}{\bf{n}}} \right)\\{\bf{ = }}\frac{{\bf{3}}}{{\bf{2}}}{\bf{cos(3n\pi )}}\end{aligned}\)

One has to compute and graph points \(\left( {{{\bf{x}}_{\bf{n}}}{\bf{,}}{{\bf{v}}_{\bf{n}}}} \right)\)for \({\bf{n = }}\overline {{\bf{0,20}}} {\bf{.}}\) Since \({\bf{sin(3n\pi ) = 0}}\)for everyone has that\({{\bf{x}}_{\bf{n}}}{\bf{ = }}\frac{{\bf{4}}}{{\bf{5}}}{\bf{,}}\)for\({\bf{n = }}\overline {{\bf{0,20}}} \).

02

Check whether the given is subharmonic or not

When \({\bf{n}}\) is even, \({\bf{cos(3n\pi ) = 1}}\) and when \({\bf{n}}\) is odd,\({\bf{cos(3n\pi ) = - 1}}\), so one has that

\({{\bf{v}}_{\bf{n}}}{\bf{ = }}\frac{{\bf{3}}}{{\bf{2}}}{\bf{,}}\)for \({\bf{n = 0,2, \ldots ,20}}\)

\({{\bf{v}}_{\bf{n}}}{\bf{ = - }}\frac{{\bf{3}}}{{\bf{2}}}{\bf{,}}\)for \({\bf{n = 1,3, \ldots ,19}}\)

One can now conclude from the Poincare section that a solution is \({\bf{4\pi }}\)-periodic and it alternates between points \(\left( {\frac{{\bf{4}}}{{\bf{5}}}{\bf{,}}\frac{{\bf{3}}}{{\bf{2}}}} \right)\)and \(\left( {\frac{{\bf{4}}}{{\bf{5}}}{\bf{, - }}\frac{{\bf{3}}}{{\bf{2}}}} \right)\) for every step of\({\bf{2\pi }}\), so it is subharmonic.

When \({\bf{A = F = 1,f = 0}}\)and\({\bf{\omega = 3/5}}\), Poincare map is given by

\(\begin{aligned}{c}{{\bf{x}}_{\bf{n}}}{\bf{ = sin}}\left( {{\bf{2\pi \times }}\frac{{\bf{3}}}{{\bf{5}}}{\bf{n}}} \right){\bf{ + }}\frac{{\bf{1}}}{{{{{\bf{(3/5)}}}^{\bf{2}}}{\bf{ - 1}}}}{\bf{ = sin}}\left( {\frac{{\bf{6}}}{{\bf{5}}}{\bf{n\pi }}} \right){\bf{ - }}\frac{{{\bf{16}}}}{{{\bf{25}}}}{\bf{, }}\\{{\bf{v}}_{\bf{n}}}{\bf{ = }}\frac{{\bf{3}}}{{\bf{5}}}{\bf{cos}}\left( {{\bf{2\pi \times }}\frac{{\bf{3}}}{{\bf{5}}}{\bf{n}}} \right){\bf{ = }}\frac{{\bf{3}}}{{\bf{5}}}{\bf{cos}}\left( {\frac{{\bf{6}}}{{\bf{5}}}{\bf{n\pi }}} \right){\bf{.}}\end{aligned}\)

03

Finding the values of \({\bf{x,n}}\)

So, for\({\bf{\omega = }}\frac{3}{5}\)one has;

\(\begin{aligned}{c}{{\bf{x}}_{\bf{0}}}{\bf{ = - 1}}{\bf{.5625,}}\;\;\;{{\bf{x}}_{\bf{1}}}{\bf{ = - 2}}{\bf{.1503,}}\;\;\;{{\bf{x}}_{\bf{2}}}{\bf{ = - 0}}{\bf{.6114,}}\;\;\;{{\bf{x}}_{\bf{3}}}{\bf{ = - 2}}{\bf{.5136,}}\;\;\;{{\bf{x}}_{\bf{4}}}{\bf{ = - 0}}{\bf{.9747,}}\\{{\bf{x}}_{\bf{5}}}{\bf{ = - 1}}{\bf{.5625,}}\;\;\;{{\bf{x}}_{\bf{6}}}{\bf{ = - 2}}{\bf{.1503,}}\;\;\;{{\bf{x}}_{\bf{7}}}{\bf{ = - 0}}{\bf{.6114,}}\;\;\;{{\bf{x}}_{\bf{8}}}{\bf{ = - 2}}{\bf{.5136,}}\;\;\;{{\bf{x}}_{\bf{9}}}{\bf{ = - 0}}{\bf{.9747,}}\\{{\bf{x}}_{{\bf{10}}}}{\bf{ = - 1}}{\bf{.5625,}}\;\;\;{{\bf{x}}_{{\bf{11}}}}{\bf{ = - 2}}{\bf{.1503,}}\;\;\;{{\bf{x}}_{{\bf{12}}}}{\bf{ = - 0}}{\bf{.6114,}}\;\;\;{{\bf{x}}_{{\bf{13}}}}{\bf{ = - 2}}{\bf{.5136,}}\;\;\;{{\bf{x}}_{{\bf{14}}}}{\bf{ = - 0}}{\bf{.9747,}}\\{{\bf{x}}_{{\bf{15}}}}{\bf{ = - 1}}{\bf{.5625,}}\;\;\;{{\bf{x}}_{{\bf{16}}}}{\bf{ = - 2}}{\bf{.1503,}}\;\;\;{{\bf{x}}_{{\bf{17}}}}{\bf{ = - 0}}{\bf{.6114,}}\;\;\;{{\bf{x}}_{{\bf{18}}}}{\bf{ = - 2}}{\bf{.5136,}}\;\;\;{{\bf{x}}_{{\bf{19}}}}{\bf{ = - 0}}{\bf{.9747,}}\\{{\bf{x}}_{{\bf{20}}}}{\bf{ = - 1}}{\bf{.5625;}}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{{\bf{v}}_{\bf{0}}}{\bf{ = 0}}{\bf{.6,}}}&{{{\bf{v}}_{\bf{1}}}{\bf{ = - 0}}{\bf{.4854,}}}&{{{\bf{v}}_{\bf{2}}}{\bf{ = 0}}{\bf{.1854,}}}&{{{\bf{v}}_{\bf{3}}}{\bf{ = 0}}{\bf{.1854,}}}&{{{\bf{v}}_{\bf{4}}}{\bf{ = - 0}}{\bf{.4854}}}\\{{{\bf{v}}_{\bf{5}}}{\bf{ = 0}}{\bf{.6,}}}&{{{\bf{v}}_{\bf{6}}}{\bf{ = - 0}}{\bf{.4854,}}}&{{{\bf{v}}_{\bf{7}}}{\bf{ = 0}}{\bf{.1854,}}}&{{{\bf{v}}_{\bf{8}}}{\bf{ = 0}}{\bf{.1854,}}}&{{{\bf{v}}_{\bf{9}}}{\bf{ = - 0}}{\bf{.4854}}}\\{{{\bf{v}}_{{\bf{10}}}}{\bf{ = 0}}{\bf{.6,}}}&{{{\bf{v}}_{{\bf{11}}}}{\bf{ = - 0}}{\bf{.4854,}}}&{{{\bf{v}}_{{\bf{12}}}}{\bf{ = 0}}{\bf{.1854,}}}&{{{\bf{v}}_{{\bf{13}}}}{\bf{ = 0}}{\bf{.1854,}}}&{{{\bf{v}}_{{\bf{14}}}}{\bf{ = - 0}}{\bf{.4854}}}\\{{{\bf{v}}_{{\bf{15}}}}{\bf{ = 0}}{\bf{.6,}}}&{{{\bf{v}}_{{\bf{16}}}}{\bf{ = - 0}}{\bf{.4854,}}}&{{{\bf{v}}_{{\bf{17}}}}{\bf{ = 0}}{\bf{.1854,}}}&{{{\bf{v}}_{{\bf{18}}}}{\bf{ = 0}}{\bf{.1854,}}}&{{{\bf{v}}_{{\bf{19}}}}{\bf{ = - 0}}{\bf{.4854}}}\\{{{\bf{v}}_{{\bf{20}}}}{\bf{ = 0}}{\bf{.6}}}&{}&{}&{}&{}\end{aligned}\)

04

Check whether it is subharmonic or not

Now, one can conclude that for \({\bf{\omega = 3/5}}\)the Poincare map cycles through five points,

\(\begin{aligned}{*{20}{l}}{\left( {{\bf{ - 1}}{\bf{.5625,0}}{\bf{.6}}} \right){\bf{,}}\left( {{\bf{ - 2}}{\bf{.1503, - 0}}{\bf{.4854}}} \right){\bf{,}}\left( {{\bf{ - 0}}{\bf{.6114,0}}{\bf{.1854}}} \right){\bf{ }}}\\{\left( {{\bf{ - 2}}{\bf{.5136,0}}{\bf{.1854}}} \right){\bf{,}}\left( {{\bf{ - 0}}{\bf{.9747, - 0}}{\bf{.4854}}} \right)}\end{aligned}\)

And a solution is subharmonic of period \({\bf{10\pi }}\)

The graph of the Poincare map is on the figure below for both cases.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free