Logistic Model.In Section 3.2 we discussed the logistic equation\(\frac{{{\bf{dp}}}}{{{\bf{dt}}}}{\bf{ = A}}{{\bf{p}}_{\bf{1}}}{\bf{p - A}}{{\bf{p}}^{\bf{2}}}{\bf{,p(0) = }}{{\bf{p}}_{\bf{o}}}\)and its use in modeling population growth. A more general model might involve the equation\(\frac{{{\bf{dp}}}}{{{\bf{dt}}}}{\bf{ = A}}{{\bf{p}}_{\bf{1}}}{\bf{p - A}}{{\bf{p}}^{\bf{r}}}{\bf{,p(0) = }}{{\bf{p}}_{\bf{o}}}\)where r>1. To see the effect of changing the parameter rin (25), take \({{\bf{p}}_{\bf{1}}}\)= 3, A= 1, and \({{\bf{p}}_{\bf{o}}}\)= 1. Then use a numerical scheme such as Runge–Kutta with h= 0.25 to approximate the solution to (25) on the interval\(0 \le {\bf{t}} \le 5\) for r= 1.5, 2, and 3What is the limiting population in each case? For r>1, determine a general formula for the limiting population.

Short Answer

Expert verified

The general formula for the limiting population is\({{\bf{3}}^{\frac{{\bf{1}}}{{{\bf{r - 1}}}}}}\).

Step by step solution

01

Find the value of p

Here\({p_1} = 3\), \(A = 1\), and \({p_o} = 1\) then the equation is:

\(\frac{{dp}}{{dt}} = 3p - {p^r}\)

Suppose\(r > 1\). So,

\(\begin{array}{c}\int {\frac{1}{{3p - {p^r}}}dp} = \int {dt} \\\smallint \frac{1}{{{p^r}\left( {3{p^{1 - r}} - 1} \right)}}dp = t + c\\\int {\frac{1}{{3\left( {1 - r} \right)u}}du} = t + c\\\frac{{\ln \left| u \right|}}{{3\left( {1 - r} \right)}} = t + c\\\frac{{\ln \left| {3{p^{1 - r}} - 1} \right|}}{{3(1 - r)}} = t + c\\\ln \left| {3{p^{1 - r}} - 1} \right| = 3\left( {1 - r} \right)t + c\\{p^{1 - r}} = \frac{{C{e^{3(1 - r)t}} + 1}}{3}\\p = {\left( {\frac{{C{e^{3(1 - r)t}} + 1}}{3}} \right)^{\frac{1}{{1 - r}}}}\end{array}\)

Here \(p\left( 0 \right) = {p_o} = {\rm{ }}1\) then

\(\begin{array}{c}{\bf{1 = }}{\left( {\frac{{{\bf{C + 1}}}}{{\bf{3}}}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\\{\bf{C = 2}}\\{\bf{p = }}{\left( {\frac{{{\bf{2}}{{\bf{e}}^{{\bf{3(1 - r)t}}}}{\bf{ + 1}}}}{{\bf{3}}}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\end{array}\)

02

Apply limits

\(\begin{array}{c}\mathop {{\bf{lim}}}\limits_{t \to \infty } {\bf{p(t) = }}\mathop {{\bf{lim}}}\limits_{t \to \infty } {\left( {\frac{{{\bf{2}}{{\bf{e}}^{{\bf{3(1 - r)t}}}}{\bf{ + 1}}}}{{\bf{3}}}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\\{\bf{ = }}{\left( {\frac{{2\mathop {{\bf{lim}}}\limits_{t \to \infty } {{\bf{e}}^{{\bf{3(1 - r)t}}}}{\bf{ + }}1}}{3}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\\{\bf{ = }}{\left( {\frac{{\bf{1}}}{{\bf{3}}}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\\{\bf{ = }}{{\bf{3}}^{\frac{{\bf{1}}}{{{\bf{r - 1}}}}}}\end{array}\)

03

Find the result by applying the Runge-Kutta method.

Apply this method in Mat Lab.

T

R=1.5

R=2

R=3

0

1

1

1

1

4.3024

2.7277

1.7254

1.5

6.1387

2.9343

1.7319

2

7.444

2.985

1.732

3

8.6129

2.999

1.7321

4

8.911

3

1.732

5

8.980

3

1.732

Therefore, the general formula for the limiting population is\({{\bf{3}}^{\frac{{\bf{1}}}{{{\bf{r - 1}}}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free