Chapter 5: Q1RP (page 306)
Find a general solution\({\bf{x}}\left( {\bf{t}} \right){\bf{, y}}\left( {\bf{t}} \right)\)for the given system.
\(\begin{array}{c}{\bf{x' + y'' + y = 0}}\\{\bf{x'' + y' = 0}}\end{array}\)
Short Answer
The solution for the given system is:
\(\begin{array}{c}{\bf{x(t) = - }}\frac{{{{\bf{c}}_{\bf{1}}}}}{{\bf{3}}}{{\bf{t}}^{\bf{3}}}{\bf{ - }}\frac{{{{\bf{c}}_{\bf{2}}}}}{{\bf{2}}}{{\bf{t}}^{\bf{2}}}{\bf{ - }}\left( {{{\bf{c}}_{\bf{3}}}{\bf{ + 2}}{{\bf{c}}_{\bf{1}}}} \right){\bf{t + }}{{\bf{c}}_{\bf{4}}}\\{\bf{y(t) = }}{{\bf{c}}_{\bf{1}}}{{\bf{t}}^{\bf{2}}}{\bf{ + }}{{\bf{c}}_{\bf{2}}}{\bf{t + }}{{\bf{c}}_{\bf{3}}}\end{array}\)