One will compute \({x_n}\) and \({v_n}\) for \({\bf{n = }}\overline {{\bf{0,20}}} \)
\(\begin{aligned}{c}{{\bf{x}}_{\bf{0}}}{\bf{ = - 1}}{\bf{.5,}}\;\;\;{{\bf{x}}_{\bf{1}}}{\bf{ = - 1}}{\bf{.9671,}}\;\;\;{{\bf{x}}_{\bf{2}}}{\bf{ = - 0}}{\bf{.674,}}\;\;\;{{\bf{x}}_{\bf{3}}}{\bf{ = - 2}}{\bf{.4936,}}\;\;\;{{\bf{x}}_{\bf{4}}}{\bf{ = - 0}}{\bf{.5688,}}\\{{\bf{x}}_{\bf{5}}}{\bf{ = - 2}}{\bf{.153,}}\;\;\;{{\bf{x}}_{\bf{6}}}{\bf{ = - 1}}{\bf{.2764,}}\;\;\;{{\bf{x}}_{\bf{7}}}{\bf{ = - 1}}{\bf{.2425,}}\;\;\;{{\bf{x}}_{\bf{8}}}{\bf{ = - 2}}{\bf{.179,}}\;\;\;{{\bf{x}}_{\bf{9}}}{\bf{ = - 0}}{\bf{.5567,}}\\{{\bf{x}}_{{\bf{10}}}}{\bf{ = - 2}}{\bf{.4891,}}\;\;\;{{\bf{x}}_{{\bf{11}}}}{\bf{ = - 0}}{\bf{.6941,}}\;\;\;{{\bf{x}}_{{\bf{12}}}}{\bf{ = - 1}}{\bf{.936,}}\;\;\;{{\bf{x}}_{{\bf{13}}}}{\bf{ = - 1}}{\bf{.5349,}}{{\bf{x}}_{{\bf{14}}}}{\bf{ = - 1}}{\bf{.0023,}}\\{{\bf{x}}_{{\bf{15}}}}{\bf{ = - 2}}{\bf{.3452,}}\;\;\;{{\bf{x}}_{{\bf{16}}}}{\bf{ = - 0}}{\bf{.5030,}}\;\;\;{{\bf{x}}_{{\bf{17}}}}{\bf{ = - 2}}{\bf{.4179,}}\;\;\;{{\bf{x}}_{{\bf{18}}}}{\bf{ = - 0}}{\bf{.8738,}}\;\;\;{{\bf{x}}_{{\bf{19}}}}{\bf{ = - 1}}{\bf{.6895,}}\\{{\bf{x}}_{{\bf{20}}}}{\bf{ = - 1}}{\bf{.7911;}}\\\\{{\bf{v}}_{\bf{0}}}{\bf{ = 0}}{\bf{.5774,}}\;\;\;{{\bf{v}}_{\bf{1}}}{\bf{ = - 0}}{\bf{.5105,}}\;\;\;{{\bf{v}}_{\bf{2}}}{\bf{ = 0}}{\bf{.3254,}}\;\;\;{{\bf{v}}_{\bf{3}}}{\bf{ = - 0}}{\bf{.065,}}\;\;\;{{\bf{v}}_{\bf{4}}}{\bf{ = - 0}}{\bf{.2105,}}\\{{\bf{v}}_{\bf{5}}}{\bf{ = 0}}{\bf{.4373,}}\;\;\;{{\bf{v}}_{\bf{6}}}{\bf{ = - 0}}{\bf{.56272,}}\;\;\;{{\bf{v}}_{\bf{7}}}{\bf{ = 0}}{\bf{.5579,}}\;\;\;{{\bf{v}}_{\bf{8}}}{\bf{ = - 0}}{\bf{.4238,}}\;\;\;{{\bf{v}}_{\bf{9}}}{\bf{ = 0}}{\bf{.1916,}}\\{{\bf{v}}_{{\bf{10}}}}{\bf{ = 0}}{\bf{.085,}}\;\;\;{{\bf{v}}_{{\bf{11}}}}{\bf{ = - 0}}{\bf{.3419,}}\;\;\;{{\bf{v}}_{{\bf{12}}}}{\bf{ = 0}}{\bf{.5196,}}\;\;\;{{\bf{v}}_{{\bf{13}}}}{\bf{ = - 0}}{\bf{.577,}}\;\;\;{{\bf{v}}_{{\bf{14}}}}{\bf{ = 0}}{\bf{.5008,}}\\{{\bf{v}}_{{\bf{15}}}}{\bf{ = - 0}}{\bf{.3086,}}\;\;\;{{\bf{v}}_{{\bf{16}}}}{\bf{ = 0}}{\bf{.04492,}}\;\;\;{{\bf{v}}_{{\bf{17}}}}{\bf{ = 0}}{\bf{.2291,}}\;\;\;{{\bf{v}}_{{\bf{18}}}}{\bf{ = - 0}}{\bf{.4501,}}\;\;\;{{\bf{v}}_{{\bf{19}}}}{\bf{ = 0}}{\bf{.5669,}}\\{{\bf{v}}_{{\bf{20}}}}{\bf{ = - 0}}{\bf{.5524}}\end{aligned}\)