Determine the equations of motion for the two masses described in Problem \({\bf{1}}\)if\({{\bf{m}}_{\bf{1}}}{\bf{ = 1\;kg,}}{{\bf{m}}_{\bf{2}}}{\bf{ = 1\;kg}}\),\({{\bf{k}}_{\bf{1}}}{\bf{ = 3\;N/m}}\), and\({{\bf{k}}_{\bf{2}}}{\bf{ = 2\;N/m}}\).

Short Answer

Expert verified

The solutions are;

\({\bf{x(t) = - }}\frac{{\sqrt {{\bf{10}}} {\bf{ + 10}}}}{{{\bf{20}}}}{\bf{cos(}}\sqrt {{\bf{4 - }}\sqrt {{\bf{10}}} } {\bf{t) + }}\frac{{\sqrt {{\bf{10}}} {\bf{ - 10}}}}{{{\bf{20}}}}{\bf{cos(}}\sqrt {{\bf{4 + }}\sqrt {{\bf{10}}} } {\bf{t),y(t) = - }}\frac{{{\bf{3}}\sqrt {{\bf{10}}} }}{{{\bf{20}}}}{\bf{cos(}}\sqrt {{\bf{4 - }}\sqrt {{\bf{10}}} } {\bf{t) + }}\frac{{{\bf{3}}\sqrt {{\bf{10}}} }}{{{\bf{20}}}}{\bf{cos(}}\sqrt {{\bf{4 + }}\sqrt {{\bf{10}}} } {\bf{t)}}\)

Step by step solution

01

Using Newton’s second law

Assume that \(x > 0,{\bf{ }}y > 0\) and \(y > x\) to derive the differential equations of motions, and they must be true for any x and y. The Forces are proportional to the change of the length of the string, so one has\({F_1} = {k_1}\left( {y - x} \right),\;{F_2} = - {k_1}\left( {y - x} \right),\;{F_3} = - {k_2}y\)

From the second Newton's law one now has:

\(\begin{aligned}{l}{m_1}x'' = {k_1}\left( {y - x} \right)\\{m_2}y'' = - {k_1}\left( {y - x} \right) - {k_2}y\end{aligned}\)

In our case\({m_1} = 1\;kg,{m_2} = 1\;kg,{k_1} = 3\;N/m,{k_2} = 2\;N/m\), so the system is:

\(\begin{aligned}{c}x'' &= 3(y - x) \Leftrightarrow x'' + 3x - 3y = 0\\y'' &= - 3(y - x) - 2y \Leftrightarrow - 3x + y'' + 5y &= 0\end{aligned}\)

02

Using the elimination method

One will solve this system using the elimination method. First,one needs to rewrite this system in operator form:

\(\begin{aligned}{c}\left( {{D^2} + 3} \right){\rm{(}}x{\rm{)}} - 3{\rm{(}}y{\rm{)}} = 0\\ - 3{\rm{(}}x{\rm{)}} + \left( {{D^2} + 5} \right){\rm{(}}y{\rm{)}} &= 0\end{aligned}\)

Multiplying the first equation by \(\left( {{D^2} + 5} \right)\) and the second by 3, and then adding them together give us

\(\begin{aligned}{c}\left( {{D^2} + 5} \right)\left( {{D^2} + 3} \right){\rm{(}}x{\rm{)}} - 3\left( {{D^2} + 5} \right){\rm{(}}y{\rm{)}} &= 0\\ - 9{\rm{(}}x{\rm{)}} + 3\left( {{D^2} + 5} \right){\rm{(}}y{\rm{)}} &= 0\\\left( {\left( {{D^2} + 5} \right)\left( {{D^2} + 3} \right) - 9} \right){\rm{(}}x{\rm{)}} &= 0 \Leftrightarrow \left( {{D^4} + 8{D^2} + 6} \right){\rm{(}}x{\rm{)}} = 0\end{aligned}\)

03

Finding the solution for the auxiliary equation

The auxiliary equation is\({r^4} + 8{r^2} + 6 = 0\), and its solutions are:

\(\begin{aligned}{c}{r^2} = \frac{{ - 8 \pm \sqrt {68 - 24} }}{2} &= - 4 \pm \sqrt {10} \\{r_{1,2}} &= \pm i\sqrt {4 - \sqrt {10} } ,\;\;\;{r_{3,4}} &= \pm i\sqrt {4 + \sqrt {10} } \end{aligned}\)

So, the general solution for x is:

\(x\left( t \right) = {c_1}\cos \left( {\sqrt {4 - \sqrt {10} } t} \right) + {c_2}\sin \left( {\sqrt {4 - \sqrt {10} } t} \right) + {c_3}\cos \left( {\sqrt {4 + \sqrt {10} } t} \right) + {c_4}\sin \left( {\sqrt 4 + \sqrt {10} t} \right)\)

04

Finding \({{\bf{D}}^{\bf{2}}}{\bf{(x)}}\)

From the first equation of the system, one has that\(3y = x'' + 3x\), so let’s first find\({D^2}{\rm{(}}x{\rm{)}}\):

\(\begin{aligned}{c}D{\rm{(}}x{\rm{)}} &= - \sqrt {4 - \sqrt {10} } {c_1}\sin \left( {\sqrt {4 - \sqrt {10} } t} \right) + \sqrt {4 - \sqrt {10} } {c_2}\cos \left( {\sqrt {4 - \sqrt {10} } t} \right) - \sqrt {4 + \sqrt {10} } {c_3}\sin \left( {\sqrt {4 + \sqrt {10} } t} \right) + \sqrt {4 + \sqrt {10} } {c_4}\cos \left( {\sqrt {4 + \sqrt {10} } t} \right)\\{D^2}{\rm{(}}x{\rm{)}} &= - \left( {4 - \sqrt {10} } \right){c_1}\cos \left( {\sqrt {4 - \sqrt {10} } t} \right) - \left( {4 - \sqrt {10} } \right){c_2}\sin \left( {\sqrt {4 - \sqrt {10} } t} \right) - (4 + \sqrt {10} ){c_3}\cos \left( {\sqrt {4 + \sqrt {10} } t} \right) - \left( {4 + \sqrt {10} } \right){c_4}\sin \left( {\sqrt {4 + \sqrt {10} } t} \right)\end{aligned}\)

Now one has,

\(\begin{aligned}{c}3y\left( t \right) &= - \left( {4 - \sqrt {10} } \right){c_1}\cos \left( {\sqrt {4 - \sqrt {10} } t} \right) - \left( {4 - \sqrt {10} } \right){c_2}\sin \left( {\sqrt {4 - \sqrt {10} } t} \right) - \left( {4 + \sqrt {10} } \right){c_3}\cos \left( {\sqrt {4 + \sqrt {10} } t} \right) - \left( {4 + \sqrt {10} } \right){c_4}\sin \left( {\sqrt {4 + \sqrt {10} } t} \right)\\ + 3{c_1}\cos \left( {\sqrt {4 - \sqrt {10} } t} \right) + 3{c_2}\sin \left( {\sqrt {4 - \sqrt {10} } t} \right) + 3{c_3}\cos \left( {\sqrt {4 + \sqrt {10} } t} \right) + 3{c_4}\sin \left( {\sqrt {4 + \sqrt {10} } t} \right)\\ &= - \left( {1 - \sqrt {10} } \right){c_1}\cos \left( {\sqrt {4 - \sqrt {10} } t} \right) - \left( {1 - \sqrt {10} } \right){c_2}\sin \left( {\sqrt {4 - \sqrt {10} } t} \right) - \left( {1 + \sqrt {10} } \right){c_3}\cos \left( {\sqrt {4 + \sqrt {10} } t} \right) - (1 + \sqrt {10} ){c_4}\sin \left( {\sqrt {4 + \sqrt {10} } t} \right)\\y\left( t \right) &= - \frac{{1 - \sqrt {10} }}{3}{c_1}\cos \left( {\sqrt {4 - \sqrt {10} } t} \right) - \frac{{1 - \sqrt {10} }}{3}{c_2}\sin \left( {\sqrt {4 - \sqrt {10} } t} \right) - \frac{{1 + \sqrt {10} }}{3}{c_3}\cos \left( {\sqrt {4 + \sqrt {10} } t} \right) - \frac{{1 + \sqrt {10} }}{3}{c_4}\sin \left( {\sqrt {4 + \sqrt {10} } t} \right)\end{aligned}\)

The initial conditions are\(x\left( 0 \right) = - 1,x'\left( 0 \right) = y\left( 0 \right) = y'\left( 0 \right) = 0\).

05

Finding the derivatives

First, one needs to find the first derivative of\({\bf{y}}\):

\(\begin{aligned}{c}D{\rm{(}}y{\rm{)}} &= \frac{{\left( {1 - \sqrt {10} } \right)\sqrt {4 - \sqrt {10} } }}{3}{c_1}\sin \left( {\sqrt {4 - \sqrt {10} } t} \right) - \frac{{\left( {1 - \sqrt {10} } \right)\sqrt {4 - \sqrt {10} } }}{3}{c_2}\cos \left( {\sqrt {4 - \sqrt {10} } t} \right){\bf{ }}\\ + \frac{{\left( {1 + \sqrt {10} } \right)\sqrt {4 + \sqrt {10} } }}{3}{c_3}\sin \left( {\sqrt {4 + \sqrt {10} } t} \right) - \frac{{\left( {1 + \sqrt {10} } \right)\sqrt {4 + \sqrt {10} } }}{3}{c_4}\sin \left( {\sqrt {4 + \sqrt {10} } t} \right)\end{aligned}\)

So, the initial conditions give us:\(x\left( 0 \right) = {c_1} + {c_3} = - 1,\)

\(\begin{aligned}{c}x'\left( 0 \right) &= \sqrt {4 - \sqrt {10} } {c_2} + \sqrt {4 + \sqrt {10} } {c_4} &= 0\\y\left( 0 \right) &= - \frac{{1 - \sqrt {10} }}{3}{c_1} - \frac{{1 + \sqrt {10} }}{3}{c_3} &= 0\\y'\left( 0 \right) &= - \frac{{\left( {1 - \sqrt {10} } \right)\sqrt {4 - \sqrt {10} } }}{3}{c_2} - \frac{{\left( {1 + \sqrt {10} } \right)\sqrt {4 + \sqrt {10} } }}{3}{c_4} &= 0\end{aligned}\)

06

Substituting the values

From the second equation one has that\({c_2} = \frac{{ - \sqrt {4 + \sqrt {10} } }}{{\sqrt {4 - \sqrt {10} } }}{c_4}\), so substituting this into the fourth equation one has:

\(\begin{aligned}{c} - \frac{{\left( {1 - \sqrt {10} } \right)\sqrt {4 - \sqrt {10} } }}{3} \times \left( { - \frac{{4 + \sqrt {10} }}{{4 - \sqrt {10} }}} \right){c_4} - \frac{{\left( {1 + \sqrt {10} } \right)\sqrt {4 + \sqrt {10} } }}{3}{c_4} &= 0\\ \Leftrightarrow \left( {1 - \sqrt {10} + 1 + \sqrt {10} } \right){c_4} = 0\\ \Leftrightarrow {c_4} = 0\; \Rightarrow {c_2} = 0\end{aligned}\)

Multiplying the third equation \(y\left( 0 \right) = 0\) by 3 and expressing \({c_1}\) in terms of \({c_3}\) gives us:

\({c_1} = \frac{{ - \left( {1 + \sqrt {10} } \right)}}{{\left( {1 - \sqrt {10} } \right){c_3}}}\)

07

Substituting the values

Substituting this into the first equation we get\( - \frac{{1 + \sqrt {10} }}{{1 - \sqrt {10} }}{c_3} + {c_3} = - 1\)

\(\begin{aligned}{c} \Leftrightarrow \left( { - 1 - \sqrt {10} + 1 - \sqrt {10} } \right){c_3} &= - 1 \times \left( {1 - \sqrt {10} } \right)\\ \Leftrightarrow {c_3} &= \frac{{1 - \sqrt {10} }}{{2\sqrt {10} }} &= \frac{{\sqrt {10} - 10}}{{20}}\\ \Rightarrow {c_1} &= - \frac{{1 + \sqrt {10} }}{{1 - \sqrt {10} }} \times \frac{{1 - \sqrt {10} }}{{2\sqrt {10} }} &= - \frac{{\sqrt {10} + 10}}{{20}}\end{aligned}\)

Substituting values for \({c_1},{\bf{ }}{c_2},{\bf{ }}{c_3}\) and\({c_4}\) into the general solutions for x and y one has:

\(\begin{aligned}{l}{\bf{x(t) = - }}\frac{{\sqrt {{\bf{10}}} {\bf{ + 10}}}}{{{\bf{20}}}}{\bf{cos(}}\sqrt {{\bf{4 - }}\sqrt {{\bf{10}}} } {\bf{t) + }}\frac{{\sqrt {{\bf{10}}} {\bf{ - 10}}}}{{{\bf{20}}}}{\bf{cos(}}\sqrt {{\bf{4 + }}\sqrt {{\bf{10}}} } {\bf{t),}}\\{\bf{y(t) = - }}\frac{{{\bf{1 - }}\sqrt {{\bf{10}}} }}{{\bf{3}}}{{\bf{c}}_{\bf{1}}}{\bf{cos(}}\sqrt {{\bf{4 - }}\sqrt {{\bf{10}}} } {\bf{t) - }}\frac{{{\bf{1 + }}\sqrt {{\bf{10}}} }}{{\bf{3}}}{{\bf{c}}_{\bf{3}}}{\bf{cos(}}\sqrt {{\bf{4 + }}\sqrt {{\bf{10}}} } {\bf{t)}}\\{\bf{y(t) = - }}\frac{{{\bf{3}}\sqrt {{\bf{10}}} }}{{{\bf{20}}}}{\bf{cos(}}\sqrt {{\bf{4 - }}\sqrt {{\bf{10}}} } {\bf{t) + }}\frac{{{\bf{3}}\sqrt {{\bf{10}}} }}{{{\bf{20}}}}{\bf{cos(}}\sqrt {{\bf{4 + }}\sqrt {{\bf{10}}} } {\bf{t)}}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Problems 1–7, convert the given initial value problem into an initial value problem for a system in normal form.

y''(t)=cos(t-y)+y2(t);y(0)=1,y'(0)=0

Referring to the coupled mass-spring system discussed in Example , suppose an external forceE(t)=37cos3t is applied to the second object of mass 1kg. The displacement functions xtand ytnow satisfy the system

(16)(2x''(t)+6x(t)-2y(t)=0,(17)(y''(t)+2y(t)-2x(t)=37cos3t

(a) Show that xtsatisfies the equation (18)x(4)(t)+5x''(t)+4x(t)=37cos3t

(b) Find a general solution xt to the equation (18). [Hint: Use undetermined coefficients with xp=Acos3t+Bsin3t.]

(c) Substitutext back into (16) to obtain a formula for yt.

(d) If both masses are displaced2mto the right of their equilibrium positions and then released, find the displacement functions xt and yt.

Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure 5.2). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The (diluted) solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt, determine the mass of salt in each tank at a time t0.

Sticky Friction. An alternative for the damping friction model F = -by′ discussed in Section 4.1 is the “sticky friction” model. For a mass sliding on a surface as depicted in Figure 5.18, the contact friction is more complicated than simply -by′. We observe, for example, that even if the mass is displaced slightly off the equilibrium location y = 0, it may nonetheless remain stationary due to the fact that the spring force -ky is insufficient to break the static friction’s grip. If the maximum force that the friction can exert is denoted by m, then a feasible model is given by

\({{\bf{F}}_{{\bf{friction}}}}{\bf{ = }}\left\{ \begin{array}{l}{\bf{ky,if}}\left| {{\bf{ky}}} \right|{\bf{ < }}\mu {\bf{andy' = 0}}\\\mu {\bf{sign(y),if}}\left| {{\bf{ky}}} \right| \ge {\bf{0andy' = 0}}\\ - \mu {\bf{sign(y'),ify'}} \ne 0.\end{array} \right.\)

(The function sign (s) is +1 when s 7 0, -1 when s 6 0, and 0 when s = 0.) The motion is governed by the equation (16) \({\bf{m}}\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = - ky + }}{{\bf{F}}_{{\bf{friction}}}}\)Thus, if the mass is at rest, friction balances the spring force if \(\left| {\bf{y}} \right|{\bf{ < }}\frac{\mu }{{\bf{k}}}\)but simply opposes it with intensity\(\mu \)if\(\left| {\bf{y}} \right| \ge \frac{\mu }{{\bf{k}}}\). If the mass is moving, friction opposes the velocity with the same intensity\(\mu \).

  1. Taking m =\(\mu \) = k = 1, convert (16) into the firstorder system y′ = v (17)\({\bf{v' = }}\left\{ \begin{array}{l}{\bf{0,if}}\left| {\bf{y}} \right|{\bf{ < 1andv = 0}}{\bf{.}}\\{\bf{ - y + sign(y),if}}\left| {\bf{y}} \right| \ge {\bf{1andv = 0}}\\{\bf{ - y - sign(v),ifv}} \ne 0\end{array} \right.\) ,
  2. Form the phase plane equation for (17) when v ≠ 0 and solve it to derive the solutions\({{\bf{v}}^{\bf{2}}}{\bf{ + (y \pm 1}}{{\bf{)}}^{\bf{2}}}{\bf{ = c}}\).where the plus sign prevails for v>0 and the minus sign for v<0.
  3. Identify the trajectories in the phase plane as two families of concentric semicircles. What is the centre of the semicircles in the upper half-plane? The lower half-plane?
  4. What are the critical points for (17)?
  5. Sketch the trajectory in the phase plane of the mass released from rest at y = 7.5. At what value for y does the mass come to rest?

Figure 5.16 displays some trajectories for the system dxdt=y,dydt=-x+x2What types of critical points (compare Figure 5.12 on page 267) occur at (0, 0) and (1, 0)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free