A proof of Theorem 1, page 266, is outlined below. The goal is to show that\({\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{) = g(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{) = 0}}\). Justify each step

  1. From the given hypotheses, deduce that\(\mathop {\lim }\limits_{t \to \infty } {\bf{x'(t) = f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}\) and\(\mathop {\lim }\limits_{t \to \infty } {\bf{y'(t) = g(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}\).
  2. Suppose\({\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{) > 0}}\). Then, by continuity,\({\bf{x'(t) = }}\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}\)for all large t(say, for\({\bf{t}} \ge {\bf{T}}\)). Deduce from this that\({\bf{x(t) > }}\frac{{{\bf{tf(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ + C}}\)fort>I, where Cis some constant.
  3. Conclude from part (b) that\(\mathop {\lim }\limits_{t \to \infty } {\bf{x(t)}} = + \infty \), contradicting the fact that this limit is the finite number x*. Thus, f(x*, y*) cannot be positive.
  4. Argue similarly that the supposition thatf(x*, y*) < 0 also leads to a contradiction; hence,f(x*, y*) must be zero.

In the same manner, argue that g(x*, y*) must bezero. Therefore, f(x*, y*) = g(x*, y*) = 0, and (x*, y*) isa critical point.

Short Answer

Expert verified

For all results check all steps.

Step by step solution

01

Mention given values

Suppose here (x(t),y(t)) is a solution on \(\left[ {0,\infty } \right.)\)of the system;;

\(\begin{array}{c}\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ = f(x,y)}}\\\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = g(x,y)}}\end{array}\)

Where f and g are continuous functions and the limits are:

\(\begin{array}{c}{{\bf{x}}^{\bf{*}}}{\bf{ = }}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{x(t)}}\\{{\bf{y}}^{\bf{*}}}{\bf{ = }}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{y(t)}}\end{array}\)

Exist and are finite.

02

Deduce the given

Here f and g are continuous functions so,

\(\begin{array}{c}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{x'(t) = }}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{f(x(t),y(t))}}\\{\bf{ = f(}}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{(x(t),}}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{y(t))}}\\{\bf{ = f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}\\\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{y'(t) = }}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{g(x(t),y(t))}}\\{\bf{ = g(}}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{(x(t),}}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{y(t))}}\\{\bf{ = g(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}\end{array}\)

03

Apply the definition of limits

Suppose that \({\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{) > 0}}\), since

\({\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{) = }}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{x'(t)}}\)

Apply the definition of continuity then;

\(\left| {{\bf{x'(t) - f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}} \right|{\bf{ < \varepsilon }}\)

For \({\bf{\varepsilon = }}\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}\)then;

\(\begin{array}{c}\left| {{\bf{x'(t) - f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}} \right|{\bf{ < }}\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}\\{\bf{ - }}\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ < x'(t) - f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{) < }}\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}\\\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ < x'(t) < }}\frac{{{\bf{3f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}\end{array}\)

Now, one gets\(\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ < x'(t)}}\) for\({\bf{t}} \ge {\bf{T}}\).

Apply the fundamental theorem of calculus.

\(\begin{array}{c}{\bf{x(t) - x(T) = }}\int\limits_{\bf{T}}^{\bf{t}} {{\bf{x'(s)ds}}} \\{\bf{x(t) = }}\int\limits_{\bf{T}}^{\bf{t}} {{\bf{x'(s)ds}}} {\bf{ + x(T)}}\\{\bf{ > }}\int\limits_{\bf{T}}^{\bf{t}} {\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ds}}} {\bf{ + x(T)}}\\{\bf{ = }}\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{(t - T) + x(T)}}\\{\bf{ = }}\frac{{{\bf{tf(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ - }}\frac{{{\bf{Tf(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ + x(T)}}\\{\bf{x(t) > }}\frac{{{\bf{tf(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ + C}}\end{array}\)

04

Show f is not negative

Continuing the part (b) then;

\(\begin{array}{c}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{x(t) > }}\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } \frac{{{\bf{tf(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ + C = }}\infty \\\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{x(t) = }}\infty \\{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}} \le 0\end{array}\)

05

Prove f is zero

Suppose that \({\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}} < 0\) then;

\(\begin{array}{l}{\bf{x(t) < }}\frac{{{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}\\{\bf{x(t) < }}\frac{{{\bf{tf(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ + C}}\end{array}\)

So, \(\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{x(t)}} \le \mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } \le \frac{{{\bf{tf(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}}}{{\bf{2}}}{\bf{ + C = - }}\infty \)

Therefore \(\mathop {{\bf{lim}}}\limits_{{\bf{t}} \to \infty } {\bf{x(t) = - }}\infty \)

Hence,

\(\begin{array}{l}{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}} \ge 0\\{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}} \le 0\\{\bf{f(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{) = 0}}\end{array}\)

06

Show critical point

Now repeating the same procedure for y instead of x and g instead of f gives the result. Thus\({\bf{(}}{{\bf{x}}^{\bf{*}}}{\bf{,}}{{\bf{y}}^{\bf{*}}}{\bf{)}}\)is a critical point.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find all the critical points of the system

dxdt=x2-1dydt=xy

and the solution curves for the related phase plane differential equation. Thereby proving that two trajectories lie on semicircles. What are the endpoints of the semicircles?

In Problems 3 – 18, use the elimination method to find a general solution for the given linear system, where differentiation is with respect to t.

x'+y'-x=5,x'+y'+y=1

Sticky Friction. An alternative for the damping friction model F = -by′ discussed in Section 4.1 is the “sticky friction” model. For a mass sliding on a surface as depicted in Figure 5.18, the contact friction is more complicated than simply -by′. We observe, for example, that even if the mass is displaced slightly off the equilibrium location y = 0, it may nonetheless remain stationary due to the fact that the spring force -ky is insufficient to break the static friction’s grip. If the maximum force that the friction can exert is denoted by m, then a feasible model is given by

\({{\bf{F}}_{{\bf{friction}}}}{\bf{ = }}\left\{ \begin{array}{l}{\bf{ky,if}}\left| {{\bf{ky}}} \right|{\bf{ < }}\mu {\bf{andy' = 0}}\\\mu {\bf{sign(y),if}}\left| {{\bf{ky}}} \right| \ge {\bf{0andy' = 0}}\\ - \mu {\bf{sign(y'),ify'}} \ne 0.\end{array} \right.\)

(The function sign (s) is +1 when s 7 0, -1 when s 6 0, and 0 when s = 0.) The motion is governed by the equation (16) \({\bf{m}}\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = - ky + }}{{\bf{F}}_{{\bf{friction}}}}\)Thus, if the mass is at rest, friction balances the spring force if \(\left| {\bf{y}} \right|{\bf{ < }}\frac{\mu }{{\bf{k}}}\)but simply opposes it with intensity\(\mu \)if\(\left| {\bf{y}} \right| \ge \frac{\mu }{{\bf{k}}}\). If the mass is moving, friction opposes the velocity with the same intensity\(\mu \).

  1. Taking m =\(\mu \) = k = 1, convert (16) into the firstorder system y′ = v (17)\({\bf{v' = }}\left\{ \begin{array}{l}{\bf{0,if}}\left| {\bf{y}} \right|{\bf{ < 1andv = 0}}{\bf{.}}\\{\bf{ - y + sign(y),if}}\left| {\bf{y}} \right| \ge {\bf{1andv = 0}}\\{\bf{ - y - sign(v),ifv}} \ne 0\end{array} \right.\) ,
  2. Form the phase plane equation for (17) when v ≠ 0 and solve it to derive the solutions\({{\bf{v}}^{\bf{2}}}{\bf{ + (y \pm 1}}{{\bf{)}}^{\bf{2}}}{\bf{ = c}}\).where the plus sign prevails for v>0 and the minus sign for v<0.
  3. Identify the trajectories in the phase plane as two families of concentric semicircles. What is the centre of the semicircles in the upper half-plane? The lower half-plane?
  4. What are the critical points for (17)?
  5. Sketch the trajectory in the phase plane of the mass released from rest at y = 7.5. At what value for y does the mass come to rest?

A double pendulum swinging in a vertical plane under the influence of gravity (see Figure5.35) satisfies the system

m1+m2l12θ1''+m2l1l2θ2''+m1+m2l11=0m2l22θ2''+m2l1l2θ1''+m2l22=0

When θ1andθ2are small angles. Solve the system when

m1=3kg,m2=2kg,l1=l2=5m,θ1(0)=π/6,θ2(0)=θ1'(0)=θ2'(0)=0.

Suppose the coupled mass-spring system of Problem(Figure 5.31) is hung vertically from support (with mass m2above m1), as in Section4.10, page226.

(a) Argue that at equilibrium, the lower spring is stretched a distance l1from its natural lengthl2, given byl1=m1g/k1.

(b) Argue that at equilibrium, the upper spring is stretched a distancel2=m1+m2g/k2.

(c) Show that ifx1and x2are redefined to be displacements from the equilibrium positions of the masses m1and m2, then the equations of motion are identical with those derived in Problem 1.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free