Sticky Friction. An alternative for the damping friction model F = -by′ discussed in Section 4.1 is the “sticky friction” model. For a mass sliding on a surface as depicted in Figure 5.18, the contact friction is more complicated than simply -by′. We observe, for example, that even if the mass is displaced slightly off the equilibrium location y = 0, it may nonetheless remain stationary due to the fact that the spring force -ky is insufficient to break the static friction’s grip. If the maximum force that the friction can exert is denoted by m, then a feasible model is given by

\({{\bf{F}}_{{\bf{friction}}}}{\bf{ = }}\left\{ \begin{array}{l}{\bf{ky,if}}\left| {{\bf{ky}}} \right|{\bf{ < }}\mu {\bf{andy' = 0}}\\\mu {\bf{sign(y),if}}\left| {{\bf{ky}}} \right| \ge {\bf{0andy' = 0}}\\ - \mu {\bf{sign(y'),ify'}} \ne 0.\end{array} \right.\)

(The function sign (s) is +1 when s 7 0, -1 when s 6 0, and 0 when s = 0.) The motion is governed by the equation (16) \({\bf{m}}\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = - ky + }}{{\bf{F}}_{{\bf{friction}}}}\)Thus, if the mass is at rest, friction balances the spring force if \(\left| {\bf{y}} \right|{\bf{ < }}\frac{\mu }{{\bf{k}}}\)but simply opposes it with intensity\(\mu \)if\(\left| {\bf{y}} \right| \ge \frac{\mu }{{\bf{k}}}\). If the mass is moving, friction opposes the velocity with the same intensity\(\mu \).

  1. Taking m =\(\mu \) = k = 1, convert (16) into the firstorder system y′ = v (17)\({\bf{v' = }}\left\{ \begin{array}{l}{\bf{0,if}}\left| {\bf{y}} \right|{\bf{ < 1andv = 0}}{\bf{.}}\\{\bf{ - y + sign(y),if}}\left| {\bf{y}} \right| \ge {\bf{1andv = 0}}\\{\bf{ - y - sign(v),ifv}} \ne 0\end{array} \right.\) ,
  2. Form the phase plane equation for (17) when v ≠ 0 and solve it to derive the solutions\({{\bf{v}}^{\bf{2}}}{\bf{ + (y \pm 1}}{{\bf{)}}^{\bf{2}}}{\bf{ = c}}\).where the plus sign prevails for v>0 and the minus sign for v<0.
  3. Identify the trajectories in the phase plane as two families of concentric semicircles. What is the centre of the semicircles in the upper half-plane? The lower half-plane?
  4. What are the critical points for (17)?
  5. Sketch the trajectory in the phase plane of the mass released from rest at y = 7.5. At what value for y does the mass come to rest?

Short Answer

Expert verified

The mass come to rest a\({\bf{y = - 0}}{\bf{.5}}\)

Step by step solution

01

Convert equation (16) into a first-order system.

Let y′ = v.Therefore\({\bf{v' = y''}}\). The equation in the form of a system is:

\(\begin{array}{c}\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = v}}\\\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = - y + }}{{\bf{F}}_{{\bf{friction}}}}{\bf{ = }}\left\{ \begin{array}{l}0{\bf{,if}}\left| {\bf{y}} \right|{\bf{ < }}1{\bf{andv = 0}}\\{\bf{ - y + sign(y),if}}\left| {\bf{y}} \right| \ge 1{\bf{andv = 0}}\\{\bf{ - y - sign(v),ifv}} \ne 0.\end{array} \right.\end{array}\)

02

Get the solution\({{\bf{v}}^{\bf{2}}}{\bf{ + (y \pm 1}}{{\bf{)}}^{\bf{2}}}{\bf{ = c}}\).

When \({\bf{v}} \ne 0\)and\(\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = - y - sign(v)}}\).

\(\begin{array}{c}\frac{{{\bf{dv}}}}{{{\bf{dy}}}}{\bf{ = }}\frac{{{\bf{ - y - sign(v)}}}}{{\bf{v}}}\\{\bf{ = }}\left\{ \begin{array}{l}\frac{{{\bf{ - y - 1}}}}{{\bf{v}}}{\bf{,v > 0}}\\\frac{{{\bf{ - y + 1}}}}{{\bf{v}}}{\bf{,v < 0}}\end{array} \right.\\{\bf{vdv = }}\left\{ \begin{array}{l}{\bf{ - y - 1,v > 0}}\\{\bf{ - y + 1,v < 0}}\end{array} \right.\\\smallint {\bf{vdv = }}\left\{ \begin{array}{l}\int {{\bf{ - y - 1dy}}} {\bf{,v > 0}}\\\int {{\bf{ - y + 1}}} {\bf{dy,v < 0}}\end{array} \right.\end{array}\)

\(\begin{array}{c}\frac{{{{\bf{v}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ = }}\left\{ \begin{array}{l}{\bf{ - }}\frac{{{{\bf{y}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ - y + C,v > 0}}\\{\bf{ - }}\frac{{{{\bf{y}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ + y + C,v < 0}}\end{array} \right.\\{\bf{C = }}\left\{ \begin{array}{l}\frac{{{{\bf{v}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ - }}\frac{{{{\bf{y}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ - y,v > 0}}\\\frac{{{{\bf{v}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ - }}\frac{{{{\bf{y}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ + y,v < 0}}\end{array} \right.\\\left\{ \begin{array}{c}{{\bf{v}}^{\bf{2}}}{\bf{ + }}{{\bf{y}}^{\bf{2}}}{\bf{ + 2y,v > 0}}\\{{\bf{v}}^{\bf{2}}}{\bf{ + }}{{\bf{y}}^{\bf{2}}}{\bf{ + 2y,v > 0}}\end{array} \right.{\bf{ = 2C}}\\\left\{ \begin{array}{c}{{\bf{v}}^{\bf{2}}}{\bf{ + }}{{\bf{y}}^{\bf{2}}}{\bf{ + 2y + 1,v > 0}}\\{{\bf{v}}^{\bf{2}}}{\bf{ + }}{{\bf{y}}^{\bf{2}}}{\bf{ + 2y + 1,v > 0}}\end{array} \right.{\bf{ = 2C + 1}}\\\left\{ \begin{array}{c}{{\bf{v}}^{\bf{2}}}{\bf{ + (y + 1}}{{\bf{)}}^{\bf{2}}}{\bf{,v > 0}}\\{{\bf{v}}^{\bf{2}}}{\bf{ + (y - 1}}{{\bf{)}}^{\bf{2}}}{\bf{,v > 0}}\end{array} \right.{\bf{ = 2C + 1}}\end{array}\)

So, the solution is \({{\bf{v}}^{\bf{2}}}{\bf{ + (y \pm 1}}{{\bf{)}}^{\bf{2}}}{\bf{ = c}}\).where the plus sign prevails for v>0 and the minus sign for v<0.

03

Find the circles of the equation.

In the \({\bf{y - v}}\) plane, when\({\bf{v > 0}}\), I have the semicircle. From the equation,\({{\bf{v}}^{\bf{2}}}{\bf{ + (y \pm 1}}{{\bf{)}}^{\bf{2}}}{\bf{ = c}}\) it is clear that the centre of these circles is (-1, 0). When \({\bf{v < 0}}\) I have the semicircles, from the equation \({{\bf{v}}^{\bf{2}}}{\bf{ + (y \pm 1}}{{\bf{)}}^{\bf{2}}}{\bf{ = c}}\)clear that the centre of these circles is (1, 0).

04

Find the critical points.

\({\bf{v' = }}\left\{ \begin{array}{l}{\bf{0,if}}\left| {\bf{y}} \right|{\bf{ < 1andv = 0}}{\bf{.}}\\{\bf{ - y + sign(y),if}}\left| {\bf{y}} \right| \ge {\bf{1andv = 0}}\\{\bf{ - y - sign(v),ifv}} \ne 0\end{array} \right.\)

V coordinate is always 0. In case\(\left| {\bf{y}} \right|{\bf{ < 1}}\)then \({\bf{0 = 0}}\) so, all points (y, 0).

In case \(\left| {\bf{y}} \right| \ge {\bf{1}}\)then

\(\begin{array}{c}{\bf{ - y + sign(y) = 0}}\\{\bf{y = sign(y)}}\end{array}\)

This is only true when\({\bf{y = 1 or y = - 1}}\). The critical points are (-1, 0), (1, 0).

The mass will come to rest if it hits the segment \({\bf{v = 0}}\),\({\bf{ - 1}} \le {\bf{y}} \le 1\). If I zoom on the graph it happens for\({\bf{y = - 0}}{\bf{.5}}\).

05

sketch for trajectory.

Therefore, the mass comes to rest for\({\bf{y = - 0}}{\bf{.5}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free