Four springs with the same spring constant and three equal masses are attached in a straight line on a horizontal frictionless surface as illustrated in Figure\(5.32\). Determine the normal frequencies for the system and describe the three normal modes of vibration.

Short Answer

Expert verified

The normal frequencies are\(\frac{1}{{2\pi }}\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} ,\;\frac{1}{{2\pi }}\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} ,{\bf{ }}\frac{1}{{2\pi }}\sqrt {2\frac{k}{m}} \)and the normal modes respectively are

\(\begin{aligned}{c}x\left( t \right) &= z\left( t \right) &= \frac{1}{{\sqrt 2 }}y\left( t \right),\\x\left( t \right) &= z\left( t \right) &= - \frac{1}{{\sqrt 2 }}y\left( t \right),\\x\left( t \right) &= - z\left( t \right),\;y\left( t \right) \equiv 0.\end{aligned}\)

Step by step solution

01

Using Newton’s second law

Assume that \(x > 0,\,\,y > 0,\,\,z > 0\) and \(z > y > x\) to derive the differential equations of motions, and they must be true for any \(x,\,y\) and\(z\). The Forces are proportional to the change of the length of the string, so, one has

\(\begin{aligned}{c}{F_1} &= - k \times x,\;\;\,\,\,\;{F_2} &= k\left( {y - x} \right),\;\;{F_3} &= - k\left( {y - x} \right)\\{F_4} &= k\left( {z - y} \right),\;\,{F_5} &= - k\left( {z - y} \right),\;{F_6} &= - k \times z\end{aligned}\)

From the second Newton's law one now has:

\(\begin{aligned}{c}mx'' &= {F_1} + {F_2} &= - kx + k\left( {y - x} \right)\\my'' &= {F_3} + {F_4} &= - k\left( {y - x} \right) + k\left( {z - y} \right)\\mz'' &= {F_5} + {F_6} &= - k\left( {z - y} \right) - kz\end{aligned}\)

02

Simplification

One needs to rewrite this system in operator form

\(\begin{aligned}{c}mx'' + 2kx - ky &= 0 \Leftrightarrow \left( {m{D^2} + 2k} \right)(x) - k(y) &= 0\\ - kx + my'' + 2ky - kz &= 0 \Leftrightarrow - k(x) + \left( {m{D^2} + 2k} \right)(y) - k(z) &= 0\\ - ky + mz'' + 2kz &= 0 \Leftrightarrow - k(y) + \left( {m{D^2} + 2k} \right)(z) &= 0\end{aligned}\)

One will solve this system using the method of elimination of variables. The first one will eliminate x and z to find \(y\left( t \right)\) and to do. So, one will multiply the first and the third equation by \({\bf{k}}\) and multiply the second by \(\left( {m{D^2} + 2k} \right)\) and then add all those equations together.

\(\begin{aligned}{c}k\left( {m{D^2} + 2k} \right){\rm{(}}x{\rm{)}} - {k^2}{\rm{(}}y{\rm{)}} &= 0\\ - k\left( {m{D^2} + 2k} \right){\rm{(}}x{\rm{)}} + {\left( {m{D^2} + 2k} \right)^2}{\rm{(}}y{\rm{)}} - k\left( {m{D^2} + 2k} \right){\rm{(}}z{\rm{)}} &= 0\\ - {k^2}{\rm{(}}y{\rm{)}} + k\left( {m{D^2} + 2k} \right){\rm{(}}z{\rm{)}} &= 0\\\left( {{{\left( {m{D^2} + 2k} \right)}^2} - 2{k^2}} \right){\rm{(}}y{\rm{)}} &= 0\\\left( {{m^2}{D^4} + 4mk{D^2} + 4{k^2} - 2{k^2}} \right){\rm{(}}y{\rm{)}} &= 0\\\left( {{m^2}{D^4} + 4mk{D^2} + 2{k^2}} \right){\rm{(}}y{\rm{)}} &= 0\end{aligned}\)

03

Finding the general solution 

The auxiliary equation to the previous equation is \({m^2}{r^4} + 4mk{r^2} + 2{k^2} = 0\) and its solutions are:

\(\begin{aligned}{c}{r^2} &= \frac{{ - 4km \pm \sqrt {16{m^2}{k^2} - 8{m^2}{k^2}} }}{{2{m^2}}} \Leftrightarrow {r^2} &= ( - 2 \pm \sqrt 2 )\frac{k}{m}\\ \Rightarrow {r_{1,2}} &= \pm \sqrt {( - 2 + \sqrt 2 )\frac{k}{m}} ,\;\;\;{r_{3,4}} &= \pm \sqrt {( - 2 - \sqrt 2 )\frac{k}{m}} \\ \Rightarrow {r_{1,2}} &= \pm i\sqrt {(2 - \sqrt 2 )\frac{k}{m}} ,\;\;\;{r_{3,4}} &= \pm i\sqrt {(2 + \sqrt 2 )\frac{k}{m}} \end{aligned}\)

Therefore, the general solution for \(y\left( t \right)\) is

\(y\left( t \right) = {c_1}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_2}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right){\bf{ }} + {c_3}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_4}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\)

04

Finding the solution for the auxiliary equation

The first equation of the system gives us that\(ky = \left( {m{D^2} + 2k} \right){\rm{(}}x{\rm{)}}\), so one has to solve the following equation:

\(\left( {m{D^2} + 2k} \right){\rm{(}}x{\rm{)}} = {c_1}k\cos \left( {\sqrt {\left( {{\rm{2 - }}\sqrt {\rm{2}} } \right)\frac{k}{m}} t} \right) + {c_2}k\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_3}k\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_4}k\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\)

First, one will find a homogeneous solution for \(x\left( t \right)\) and then find a particular solution. The auxiliary equation is \(m{r^2} + 2k = 0\) and its solutions are\({r_{1,2}} = \pm \sqrt { - 2\frac{k}{m}} \Leftrightarrow {r_{1,2}} = \pm i\sqrt {2\frac{k}{m}} \)

05

Finding homogeneous solution

The homogeneous solution for \(x\left( t \right)\) is\({x_h}\left( t \right) = {d_1}\cos \left( {\sqrt {2\frac{k}{m}} t} \right) + {d_2}\sin \left( {\sqrt {2\frac{k}{m}} t} \right)\)

Assume that a particular solution for x has a form of

\({x_p}\left( t \right) = A\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + B\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right){\bf{ }} + C\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + D\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\)

06

Finding \({{\bf{D}}^{\bf{2}}}\left( {{{\bf{x}}_{\bf{p}}}{\bf{(t)}}} \right)\) 

First, one needs to find\({D^2}\left( {{x_p}\left( t \right)} \right)\):

\(\begin{aligned}{c}D\left( {{x_p}\left( t \right)} \right) &= - A\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} \sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + B\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} \cos \left( {\sqrt {\left. {\left( {2 - \sqrt 2 } \right)\frac{k}{m}t} \right)} } \right. - C\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} \sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\\ + D\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} \cos \left( {\sqrt {\left. {\left( {2 + \sqrt 2 } \right)\frac{k}{m}t} \right)} } \right.{D^2}\left( {{x_p}\left( t \right)} \right)\\ &= - A\left( {2 - \sqrt 2 } \right)\frac{k}{m}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - B\left( {2 - \sqrt 2 } \right)\frac{k}{m}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - C\left( {2 + \sqrt 2 } \right)\frac{k}{m}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - D\left( {2 + \sqrt 2 } \right)\frac{k}{m}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\end{aligned}\)

07

Substituting the values

Now, one has that

\(\begin{aligned}{c}\left( {m{D^2} + 2k} \right)\left( {{x_p}\left( t \right)} \right)\\ &= m\left( { - A\left( {2 - \sqrt 2 } \right)\frac{k}{m}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - B\left( {2 - \sqrt 2 } \right)\frac{k}{m}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}t} } \right)} \right. - C\left( {2 + \sqrt 2 } \right)\frac{k}{m}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}t} } \right) - D\left( {2 + \sqrt 2 } \right)\frac{k}{m}\sin \left( {\sqrt {\left. {\left. {\left( {2 + \sqrt 2 } \right)\frac{k}{m}t} \right)} \right)} } \right.\\ + 2k\left( {A\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + B\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right)} \right.\left. { + C\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + D\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)} \right)\\ &= Ak\sqrt 2 \cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + Bk\sqrt 2 \sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right)\left. {\left. { - Ck\sqrt 2 \cos \sqrt {\left( {2 + \sqrt 2 } \right)} \frac{k}{m}t} \right) - Dk\sqrt 2 \sin \sqrt {\left( {2 + \sqrt 2 } \right)} \frac{k}{m}t} \right)\\ &= {c_1}k\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_2}k\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_3}k\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_4}k\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\\ &= k \times y\left( t \right)\end{aligned}\)

08

Solution for \({\bf{x}}\left( {\bf{t}} \right)\)

Dividing this equation by k and equation the coefficients one will get:

\(\begin{aligned}{l}A\sqrt 2 &= {c_1},\;\;\;B\sqrt 2 &= {c_2},\;\;\; - C\sqrt 2 &= {c_3},\;\;\;D\sqrt 2 &= {c_4}\\ \Rightarrow A &= \frac{{{c_1}}}{{\sqrt 2 }},\;\;\;B &= \frac{{{c_2}}}{{\sqrt 2 }},\;\;\;C &= - \frac{{{c_3}}}{{\sqrt 2 }},\;\;\;D &= - \frac{{{c_4}}}{{\sqrt 2 }}\end{aligned}\)

Therefore, the particular solution for\(x\left( t \right)\) is

\({x_p}\left( t \right) = \frac{{{c_1}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + \frac{{{c_2}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_3}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_4}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\)And the general solution is

\(x\left( t \right) = {x_p}\left( t \right) + {x_h}\left( t \right)\).

09

Finding derivatives

So, one gets,

\( = \frac{{{c_1}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + \frac{{{c_2}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_3}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_4}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + {d_1}\cos \left( {\sqrt {2\frac{k}{m}} t} \right) + {d_2}\sin \left( {\sqrt {2\frac{k}{m}} t} \right)\)One will find \(z\left( t \right)\) from the second equation of the system which gives us that\(kz = - kx + \left( {m{D^2} + 2k} \right){\rm{(}}y{\rm{)}}\)and similarly as before we will first find the second derivative of\(y\left( t \right)\):

\(D{\rm{(}}y\left( t \right){\rm{)}} = - {c_1}\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} \sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_2}\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} \cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - {c_3}\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} \sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_4}\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} \cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\)

\({D^2}{\rm{(}}y\left( t \right){\rm{)}} = - {c_1}\left( {2 - \sqrt 2 } \right)\frac{k}{m}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - {c_2}\left( {2 - \sqrt 2 } \right)\frac{k}{m}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - {c_3}\left( {2 + \sqrt 2 } \right)\frac{k}{m}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - {c_4}\left( {2 + \sqrt 2 } \right)\frac{k}{m}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\)

10

Substituting the values

So, one has\(kz = - kx + m{D^2}{\rm{(}}y{\rm{)}} + 2ky\)

\(\begin{aligned}{l} &= - k\left( {\frac{{{c_1}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + \frac{{{c_2}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right)} \right. - \frac{{{c_3}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_4}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\left. { + {d_1}\cos \left( {\sqrt {2\frac{k}{m}} t} \right) + {d_2}\sin \left( {\sqrt {2\frac{k}{m}} t} \right)} \right)\\ + m\left( { - {c_1}\left( {2 - \sqrt 2 } \right)\frac{k}{m}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - {c_2}\left( {2 - \sqrt 2 } \right)\frac{k}{m}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right)} \right.\left. { - {c_3}\left( {2 + \sqrt 2 } \right)\frac{k}{m}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - {c_4}\left( {2 + \sqrt 2 } \right)\frac{k}{m}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)} \right)\\ + 2k\left( {{c_1}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_2}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right)} \right.\left. { + {c_3}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_4}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)} \right)\end{aligned}\)

Finally, by dividing the previous equation by k we have that a general solution for \(z\left( t \right)\) is

\(\begin{aligned}{l}z\left( t \right) &= \frac{{{c_1}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + \frac{{{c_2}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_3}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_4}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\\ - {d_1}\cos \left( {\sqrt {2\frac{k}{m}t} } \right) - {d_2}\sin \left( {\sqrt {2\frac{k}{m}} t} \right)\end{aligned}\)

11

Finding normal frequencies

From the equations of motion for \(x,{\bf{ }}y\) and\(z\), one has that the normal angular frequencies are:

\(\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} ,\;\;\;\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} \)and\(\sqrt {2\frac{k}{m}} \).

The normal frequencies are\(\frac{1}{{2\pi }}\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} ,\;\;\;\frac{1}{{2\pi }}\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} ,{\bf{ }}\frac{1}{{2\pi }}\sqrt {2\frac{k}{m}} \)

To describe the normal mode for the first normal frequency one will take \({c_3} = {c_4} = {d_1} = {d_2} = 0\) and then

\(\begin{aligned}{l}x\left( t \right) &= \frac{{{c_1}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + \frac{{{c_2}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right)\\y\left( t \right) = {c_1}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_2}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right)\\z\left( t \right) = \frac{{{c_1}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right) + \frac{{{c_2}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 - \sqrt 2 } \right)\frac{k}{m}} t} \right)\end{aligned}\)

12

Finding the normal mode 

The normal mode for the normal frequency is\(x\left( t \right) = z\left( t \right) = \frac{1}{{\sqrt 2 }}y\left( t \right)\)

Setting that\({c_1} = {c_2} = {d_1} = {d_2} = 0\), one will get that,

\(\begin{aligned}{l}x\left( t \right) &= - \frac{{{c_3}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_4}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\\y\left( t \right) &= {c_3}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) + {c_4}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\\z\left( t \right) &= - \frac{{{c_3}}}{{\sqrt 2 }}\cos \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right) - \frac{{{c_4}}}{{\sqrt 2 }}\sin \left( {\sqrt {\left( {2 + \sqrt 2 } \right)\frac{k}{m}} t} \right)\end{aligned}\)

13

Finding the normal mode for the normal frequency

Therefore, the normal mode for the normal frequency \(\frac{1}{2}\pi \sqrt {\left( {2 + \sqrt 2 } \right)} k/m\) is

\(x\left( t \right) = z\left( t \right) = - \frac{1}{{\sqrt 2 }}y\left( t \right)\)

For\({c_1} = {c_2} = {c_3} = {c_4} = 0\), one will have that,

\(\begin{aligned}{l}x\left( t \right) &= {d_1}\cos \left( {\sqrt {2\frac{k}{m}} t} \right) + {d_2}\sin \left( {\sqrt {2\frac{k}{m}} t} \right)\\y\left( t \right) \equiv 0\\z\left( t \right) &= - {d_1}\cos \left( {\sqrt {2\frac{k}{m}} t} \right) - {d_2}\sin \left( {\sqrt {2\frac{k}{m}} t} \right)\end{aligned}\)

Therefore, the normal mode for the normal frequency\(\sqrt {\bf{2}} {\bf{k/m}}\)is:

\({\bf{x(t) = - z(t),}}\;\;\;{\bf{y(t)}} \equiv 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Problems 1–7, convert the given initial value problem into an initial value problem for a system in normal form.

3x''+5x-2y=0;x(0)=-1,x'(0)=04y''+2y-6x=0;y(0)=1,y'(0)=2

Using the software, sketch the direction field in the phase-plane for the system dxdt=-2x+y,dydt=-5x-4y. From the sketch, predict the asymptotic limit (ast

of the solution starting at (1, 1).

Predator-Prey Model.The Volterra–Lotka predator-prey model predicts some rather interesting behavior that is evident in certain biological systems. For example, suppose you fix the initial population of prey but increase the initial population of predators. Then the population cycle for the prey becomes more severe in the sense that there is a long period of time with a reduced population of prey followed by a short period when the population of prey is very large. To demonstrate this behavior, use the vectorized Runge–

Kutta algorithm for systems withh=0.5to approximate the populations of prey xand of predators yover the period [0, 5] that satisfy the Volterra–Lotka systemx'=x(3-y),y'=y(x-3)

under each of the following initial conditions:

(a)x(0)=2,y(0)=4(b)x(0)=2,y(0)=5(c)x(0)=2,y(0)=7

Suppose the coupled mass-spring system of Problem(Figure 5.31) is hung vertically from support (with mass m2above m1), as in Section4.10, page226.

(a) Argue that at equilibrium, the lower spring is stretched a distance l1from its natural lengthl2, given byl1=m1g/k1.

(b) Argue that at equilibrium, the upper spring is stretched a distancel2=m1+m2g/k2.

(c) Show that ifx1and x2are redefined to be displacements from the equilibrium positions of the masses m1and m2, then the equations of motion are identical with those derived in Problem 1.

The doubling modulo \({\bf{1}}\) map defined by the equation \(\left( {\bf{9}} \right)\)exhibits some fascinating behavior. Compute the sequence obtained when

  1. \({{\bf{x}}_0}{\bf{ = k / 7}}\)for\({\bf{k = 1,2, \ldots ,6}}\).
  2. \({{\bf{x}}_0}{\bf{ = k / 15}}\)for\({\bf{k = 1,2, \ldots ,14}}\).
  3. \({{\bf{x}}_{\bf{0}}}{\bf{ = k/}}{{\bf{2}}^{\bf{j}}}\), where \({\bf{j}}\)is a positive integer and \({\bf{k = 1,2, \ldots ,}}{{\bf{2}}^{\bf{j}}}{\bf{ - 1}}{\bf{.}}\)

Numbers of the form \({\bf{k/}}{{\bf{2}}^{\bf{j}}}\) are called dyadic numbers and are dense in \(\left( {{\bf{0,1}}} \right){\bf{.}}\)That is, there is a dyadic number arbitrarily close to any real number (rational or irrational).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free