Secretion of Hormones.The secretion of hormones into the blood is often a periodic activity. If a hormone is secreted on a 24-h cycle, then the rate of change of the level of the hormone in the blood may be represented by

the initial value problem\(\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ = \alpha - \beta cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - kx,x(0) = }}{{\bf{x}}_{\bf{o}}}\)where x(t) is the amount of the hormone in the blood at the time t, \({\bf{\alpha }}\) is the average secretion rate, \({\bf{\beta }}\)is the amount of daily variation in the secretion, and kis a positive constant reflecting the rate at which the body removes the hormone from the blood. If \({\bf{\alpha }}\)=\({\bf{\beta }}\) = 1, k= 2, and \({{\bf{x}}_{\bf{o}}}\) = 10, solve for x(t).

Short Answer

Expert verified

The value is\({\bf{x = }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ - }}\frac{{{\bf{12(24cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ + \pi sin}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{)}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}{\bf{ + }}\left( {\frac{{{\bf{19}}}}{{\bf{2}}}{\bf{ + }}\frac{{{\bf{288}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}} \right){{\bf{e}}^{{\bf{ - 2t}}}}\).

Step by step solution

01

Find the value of x

Here\({\bf{\alpha }}\)=\({\bf{\beta }}\)= 1, k= 2, and \({{\bf{x}}_{\bf{o}}}\) = 10.

Now,

\(\begin{array}{c}\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ = 1 - cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 2x}}\\\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ + 2x = 1 - cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}\end{array}\)

The linear equation of the form is\(\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ + P(t)x = Q(t)}}\).

The integrating factor is\({\bf{\mu (t) = }}{{\bf{e}}^{{\bf{2t}}}}\).

Now,

\(\begin{array}{c}{{\bf{e}}^{{\bf{2t}}}}\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ + 2}}{{\bf{e}}^{{\bf{2t}}}}{\bf{x = }}{{\bf{e}}^{{\bf{2t}}}}\left( {{\bf{1 - cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}} \right)\\\frac{{\bf{d}}}{{{\bf{dt}}}}{\bf{[}}{{\bf{e}}^{{\bf{2t}}}}{\bf{x] = }}\int {{{\bf{e}}^{{\bf{2t}}}}{\bf{ - }}{{\bf{e}}^{{\bf{2t}}}}} \left( {{\bf{cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}} \right){\bf{dt}}\\{{\bf{e}}^{{\bf{2t}}}}{\bf{x = }}\frac{{{{\bf{e}}^{{\bf{2t}}}}}}{{\bf{2}}}{\bf{ - I + c}}\end{array}\)

02

Find the value of I

\(\begin{array}{c}{\bf{I = }}\int {{{\bf{e}}^{{\bf{2t}}}}\left( {{\bf{cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}} \right)} {\bf{dt}}\\{\bf{I = }}\frac{{{{\bf{e}}^{{\bf{2t}}}}}}{{\bf{2}}}\left( {{\bf{cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}} \right){\bf{ - }}\frac{{\bf{\pi }}}{{{\bf{24}}}}\int {{{\bf{e}}^{{\bf{2t}}}}\left( {{\bf{sin}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}} \right)} {\bf{dt}}\\{\bf{I = }}\frac{{{{\bf{e}}^{{\bf{2t}}}}}}{{\bf{2}}}\left( {{\bf{cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}} \right){\bf{ - }}\frac{{{\bf{\pi }}{{\bf{e}}^{{\bf{2t}}}}}}{{{\bf{48}}}}\left( {{\bf{sin}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}} \right){\bf{ + }}\frac{{{{\bf{\pi }}^{\bf{2}}}}}{{{\bf{576}}}}{\bf{I}}\\{\bf{I = }}\frac{{{\bf{12}}{{\bf{e}}^{{\bf{2t}}}}{\bf{(24cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ + \pi sin}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{)}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}\end{array}\)

03

Apply initial conditions and value of I.

\(\begin{array}{c}{{\bf{e}}^{{\bf{2t}}}}{\bf{x = }}\frac{{{{\bf{e}}^{{\bf{2t}}}}}}{{\bf{2}}}{\bf{ - }}\frac{{{\bf{12}}{{\bf{e}}^{{\bf{2t}}}}{\bf{(24cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ + \pi sin}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{)}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}{\bf{ + c}}\\{\bf{x = }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ - }}\frac{{{\bf{12(24cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ + \pi sin}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{)}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}{\bf{ + c}}{{\bf{e}}^{{\bf{ - 2t}}}}\\{\bf{10 = }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ - }}\frac{{{\bf{12(24)}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}{\bf{ + c}}\\{\bf{c = 10 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + }}\frac{{{\bf{288}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}\\{\bf{c = }}\frac{{{\bf{19}}}}{{\bf{2}}}{\bf{ + }}\frac{{{\bf{288}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}\\{\bf{x = }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ - }}\frac{{{\bf{12(24cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ + \pi sin}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{)}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}{\bf{ + }}\left( {\frac{{{\bf{19}}}}{{\bf{2}}}{\bf{ + }}\frac{{{\bf{288}}}}{{{\bf{576 + }}{{\bf{\pi }}^{\bf{2}}}}}} \right){{\bf{e}}^{{\bf{ - 2t}}}}\end{array}\)

This is the required result.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Verify that the solution to the initial value problem

x'=5x-3y-2;x0=2,y'=4x-3y-1;y0=0

Satisfies |xt|+|yt|+ast+

Sturm–Liouville Form. A second-order equation is said to be in Sturm–Liouville form if it is expressed as [p(t)y'(t)]'+q(t)y(t)=0. Show that the substitutionsx1=y,x2=py' result in the normal form x'1=x2p,x2=-qx1. Ify(0)=a,y'(0)=b are the initial values for the Sturm–Liouville problem, what are x1(0)andx2(0)?

In Problems 3 – 18, use the elimination method to find a general solution for the given linear system, where differentiation is with respect to t.

x''+y''-x'=2t,x''+y'-x+y=-1

Sticky Friction. An alternative for the damping friction model F = -by′ discussed in Section 4.1 is the “sticky friction” model. For a mass sliding on a surface as depicted in Figure 5.18, the contact friction is more complicated than simply -by′. We observe, for example, that even if the mass is displaced slightly off the equilibrium location y = 0, it may nonetheless remain stationary due to the fact that the spring force -ky is insufficient to break the static friction’s grip. If the maximum force that the friction can exert is denoted by m, then a feasible model is given by

\({{\bf{F}}_{{\bf{friction}}}}{\bf{ = }}\left\{ \begin{array}{l}{\bf{ky,if}}\left| {{\bf{ky}}} \right|{\bf{ < }}\mu {\bf{andy' = 0}}\\\mu {\bf{sign(y),if}}\left| {{\bf{ky}}} \right| \ge {\bf{0andy' = 0}}\\ - \mu {\bf{sign(y'),ify'}} \ne 0.\end{array} \right.\)

(The function sign (s) is +1 when s 7 0, -1 when s 6 0, and 0 when s = 0.) The motion is governed by the equation (16) \({\bf{m}}\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = - ky + }}{{\bf{F}}_{{\bf{friction}}}}\)Thus, if the mass is at rest, friction balances the spring force if \(\left| {\bf{y}} \right|{\bf{ < }}\frac{\mu }{{\bf{k}}}\)but simply opposes it with intensity\(\mu \)if\(\left| {\bf{y}} \right| \ge \frac{\mu }{{\bf{k}}}\). If the mass is moving, friction opposes the velocity with the same intensity\(\mu \).

  1. Taking m =\(\mu \) = k = 1, convert (16) into the firstorder system y′ = v (17)\({\bf{v' = }}\left\{ \begin{array}{l}{\bf{0,if}}\left| {\bf{y}} \right|{\bf{ < 1andv = 0}}{\bf{.}}\\{\bf{ - y + sign(y),if}}\left| {\bf{y}} \right| \ge {\bf{1andv = 0}}\\{\bf{ - y - sign(v),ifv}} \ne 0\end{array} \right.\) ,
  2. Form the phase plane equation for (17) when v ≠ 0 and solve it to derive the solutions\({{\bf{v}}^{\bf{2}}}{\bf{ + (y \pm 1}}{{\bf{)}}^{\bf{2}}}{\bf{ = c}}\).where the plus sign prevails for v>0 and the minus sign for v<0.
  3. Identify the trajectories in the phase plane as two families of concentric semicircles. What is the centre of the semicircles in the upper half-plane? The lower half-plane?
  4. What are the critical points for (17)?
  5. Sketch the trajectory in the phase plane of the mass released from rest at y = 7.5. At what value for y does the mass come to rest?

In Problems 3 – 18, use the elimination method to find a general solution for the given linear system, where differentiation is with respect to t.

D2-1u+5v=et,2u+D2+2v=0

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free