Chapter 5: Q3RP (page 306)
Find a general solution \({\bf{x}}\left( {\bf{t}} \right)\),\({\bf{y}}\left( {\bf{t}} \right)\)for the given system.
\(\begin{array}{l}{\bf{2x' - y' = y + 3x + }}{{\bf{e}}^{\bf{t}}}{\bf{,}}\\{\bf{3y' - 4x' = y - 15x + }}{{\bf{e}}^{{\bf{ - t}}}}\end{array}\)
Short Answer
The general solutions \({\bf{x}}\left( {\bf{t}} \right)\) and \({\bf{y}}\left( {\bf{t}} \right)\) for the given system are
\(\begin{array}{c}{\bf{x(t) = }}{{\bf{c}}_{\bf{1}}}{\bf{cos3t + }}{{\bf{c}}_{\bf{2}}}{\bf{sin3t + }}\frac{{{{\bf{e}}^{\bf{t}}}}}{{{\bf{10}}}}{\bf{,}}\\{\bf{y(t) = }}\frac{{\bf{3}}}{{\bf{2}}}\left( {{{\bf{c}}_{\bf{1}}}{\bf{ + }}{{\bf{c}}_{\bf{2}}}} \right){\bf{cos3t - }}\frac{{\bf{3}}}{{\bf{2}}}\left( {{{\bf{c}}_{\bf{1}}}{\bf{ - }}{{\bf{c}}_{\bf{2}}}} \right){\bf{sin3t - }}\frac{{{\bf{11}}}}{{{\bf{20}}}}{{\bf{e}}^{\bf{t}}}{\bf{ - }}\frac{{\bf{1}}}{{\bf{4}}}{{\bf{e}}^{{\bf{ - t}}}}\end{array}\)