An RLC series circuit has a voltage source of form\({\bf{E(t) = }}{{\bf{E}}_{\bf{o}}}{\bf{cos\gamma t}}\)V, a resistor of 10 Ω, an inductor of 4 H, and a capacitor of 0.01 F. Sketch the frequency response curve for this circuit.

Short Answer

Expert verified

The local minimum and the local maximum are\({\bf{\gamma = 0,\gamma = }}\sqrt {\frac{{{\bf{175}}}}{{\bf{8}}}} \)respectively.

Step by step solution

01

Use the given conditions

The differential equation is\({\bf{L}}\frac{{{{\bf{d}}^{\bf{2}}}{\bf{q}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ + R}}\frac{{{\bf{dq}}}}{{{\bf{dt}}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{C}}}{\bf{q = }}{{\bf{E}}_{\bf{o}}}{\bf{cos\gamma t}}\).

The frequency response curve is:

\({\bf{M(\gamma ) = }}\frac{{\bf{1}}}{{\sqrt {{{\left( {\frac{{\bf{1}}}{{\bf{C}}}{\bf{ - L}}{{\bf{\gamma }}^{\bf{2}}}} \right)}^{\bf{2}}}{\bf{ + }}{{\bf{R}}^{\bf{2}}}{{\bf{\gamma }}^{\bf{2}}}} }}\)

Here R=10 Ω,L=4H,C=0.01 F then the equation is:

\({\bf{M(\gamma ) = }}\frac{{\bf{1}}}{{\sqrt {{{{\bf{(100 - 4}}{{\bf{\gamma }}^{\bf{2}}}{\bf{)}}}^{\bf{2}}}{\bf{ + 100}}{{\bf{\gamma }}^{\bf{2}}}} }}\)

02

Find the value of \({\bf{\gamma }}\)

The curve has its local maximum.

\(\begin{aligned}{c}{\bf{M'(\gamma ) = }}\frac{{\frac{{{\bf{ - 1}}}}{{\bf{2}}}}}{{{{{\bf{((100 - 4}}{{\bf{\gamma }}^{\bf{2}}}{{\bf{)}}^{\bf{2}}}{\bf{ + 100}}{{\bf{\gamma }}^{\bf{2}}}{\bf{)}}}^{\frac{{\bf{3}}}{{\bf{2}}}}}}}{\bf{.((100 - 4}}{{\bf{\gamma }}^{\bf{2}}}{{\bf{)}}^{\bf{2}}}{\bf{ + 100}}{{\bf{\gamma }}^{\bf{2}}}{\bf{)'}}\\{\bf{ = }}\frac{{\frac{{{\bf{ - 1}}}}{{\bf{2}}}}}{{{{{\bf{(10000 - 700}}{{\bf{\gamma }}^{\bf{2}}}{\bf{ + 16}}{{\bf{\gamma }}^{\bf{4}}}{\bf{)}}}^{\frac{{\bf{3}}}{{\bf{2}}}}}}}{\bf{.(10000 - 700}}{{\bf{\gamma }}^{\bf{2}}}{\bf{ + 16}}{{\bf{\gamma }}^{\bf{4}}}{\bf{)'}}\\{\bf{ = }}\frac{{{\bf{\gamma (175 - 8}}{{\bf{\gamma }}^{\bf{2}}}{\bf{)}}}}{{{\bf{2(25000 - 175}}{{\bf{\gamma }}^{\bf{2}}}{\bf{ + 4}}{{\bf{\gamma }}^{\bf{4}}}{{\bf{)}}^{\frac{{\bf{3}}}{{\bf{2}}}}}}}\end{aligned}\)

03

Apply initial conditions.

Now,

\(\begin{aligned}{c}{\bf{M'(}}{{\bf{\gamma }}_{\bf{o}}}{\bf{) = 0}}\\\frac{{{{\bf{\gamma }}_{\bf{o}}}{\bf{(175 - 8}}{{\bf{\gamma }}^{\bf{2}}}_{\bf{o}}{\bf{)}}}}{{{\bf{2(25000 - 175}}{{\bf{\gamma }}^{\bf{2}}}_{\bf{o}}{\bf{ + 4}}{{\bf{\gamma }}^{\bf{4}}}_{\bf{o}}{{\bf{)}}^{\frac{{\bf{3}}}{{\bf{2}}}}}}}{\bf{ = 0}}\\{{\bf{\gamma }}_{\bf{o}}}{\bf{(175 - 8}}{{\bf{\gamma }}^{\bf{2}}}_{\bf{o}}{\bf{) = 0}}\\{{\bf{\gamma }}_{\bf{o}}}{\bf{ = 0,}}{{\bf{\gamma }}_{\bf{o}}}{\bf{ = }}\sqrt {\frac{{{\bf{175}}}}{{\bf{8}}}} \end{aligned}\)

The local minimum is \({\bf{\gamma }} = 0\) and the local maximum is\({\bf{\gamma }} = \sqrt {\frac{{{\bf{175}}}}{{\bf{8}}}} \).

This is the required result.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Problems 3 – 18, use the elimination method to find a general solution for the given linear system, where differentiation is with respect to t.

x'=3x-2y+sint,y'=4x-y-cost

Show that the Poincare map for equation (1) is not chaoticby showing that if\({\bf{(}}{{\bf{x}}_{\bf{o}}}{\bf{,}}{{\bf{\nu }}_{\bf{o}}}{\bf{)}}\)and\({\bf{(}}{{\bf{x}}^{\bf{*}}}_{\bf{o}}{\bf{,}}{{\bf{\nu }}^{\bf{*}}}_{\bf{o}}{\bf{)}}\)are two initial values that define the Poincare maps\({\bf{(}}{{\bf{x}}_{\bf{n}}}{\bf{,}}{{\bf{\nu }}_{\bf{n}}}{\bf{)}}\) and\({\bf{(}}{{\bf{x}}^{\bf{*}}}_{\bf{n}}{\bf{,}}{{\bf{\nu }}^{\bf{*}}}_{\bf{n}}{\bf{)}}\), respectively, using the recursive formulas in (3), then one can make the distance between\({\bf{(}}{{\bf{x}}_{\bf{n}}}{\bf{,}}{{\bf{\nu }}_{\bf{n}}}{\bf{)}}\)and\({\bf{(}}{{\bf{x}}^{\bf{*}}}_{\bf{n}}{\bf{,}}{{\bf{\nu }}^{\bf{*}}}_{\bf{n}}{\bf{)}}\)small by making the distance between\({\bf{(}}{{\bf{x}}_{\bf{o}}}{\bf{,}}{{\bf{\nu }}_{\bf{o}}}{\bf{)}}\) and \({\bf{(}}{{\bf{x}}^{\bf{*}}}_{\bf{o}}{\bf{,}}{{\bf{\nu }}^{\bf{*}}}_{\bf{o}}{\bf{)}}\)small. (Hint: Let \({\bf{(A,}}\phi {\bf{)}}\)and \({\bf{(}}{{\bf{A}}^{\bf{*}}}{\bf{,}}{\phi ^ * }{\bf{)}}\) be the polar coordinates of two points in the plane. From the law of cosines, it follows that the distance d between them is given by\({{\bf{d}}^{\bf{2}}}{\bf{ = (A - }}{{\bf{A}}^{\bf{*}}}{{\bf{)}}^{\bf{2}}}{\bf{ + 2A}}{{\bf{A}}^{\bf{*}}}{\bf{(1 - cos(}}\phi {\bf{ - }}{\phi ^ * }{\bf{))}}\).)

For the interconnected tanks problem of Section5.1, page241, suppose that instead of pure water being fed into the tankA, a brine solution with concentration0.2kg/L is used; all other data remain the same. Determine the mass of salt in each tank at time tif the initial masses are and y0=0.3kg.

In Problems 3 – 18, use the elimination method to find a general solution for the given linear system, where differentiation is with respect to t.

x'+y'+2x=0,x'+y'-x-y=sint

Use the result of Problem 31 to prove that all solutions to the equation\({\bf{y'' + }}{{\bf{y}}^{\bf{3}}}{\bf{ = 0}}\)remain bounded. [Hint: Argue that \(\frac{{{{\bf{y}}^{\bf{4}}}}}{{\bf{4}}}\) is bounded above by the constant appearing in Problem 31.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free