Compute and graph the Poincare map with \(t{\bf{ = }}2\pi n,n{\bf{ = }}0,1, \ldots ,20\) for equation\(\left( 4 \right)\), taking \(A{\bf{ = F = }}1,\phi {\bf{ = }}0,\omega {\bf{ = }}\frac{1}{3}\) and\({\bf{b}} = {\bf{0}}.22\). Describe the attractor for this system.

Short Answer

Expert verified

The attractor for the given system is the point\(\left( {{\bf{ - 1}}.0604,0.2624} \right)\).

Step by step solution

01

Defining the Poincare maps

For \(A{\bf{ = F = }}1,\phi {\bf{ = }}0,\omega {\bf{ = }}\frac{1}{3},{\bf{b}} = {\bf{0}}.22\) the Poincare maps are given by:

\(\begin{aligned}{c}{x_n}{\bf{ = }}{{\bf{e}}^{{\bf{ - }}\frac{{11n\pi }}{{50}}}}\sin \left( {\frac{{\sqrt {8911} }}{{150}}n\pi } \right){\bf{ + }}\frac{{450}}{{\sqrt {169801} }}\sin \left( {2n\pi - \frac{{400}}{{99}}} \right)\\{v_n}{\bf{ = }}\frac{{{e^{{\bf{ - }}\frac{{11n\pi }}{{50}}}}}}{{300}}\left( {\sqrt {8911} \cos \left( {\frac{{\sqrt {8911} }}{{150}}n\pi } \right){\bf{ - }}33\sin \left( {\frac{{\sqrt {8911} }}{{150}}n\pi } \right)} \right){\bf{ + }}\frac{{450}}{{\sqrt {169801} }}\cos \left( {2n\pi {\bf{ - }}\frac{{400}}{{99}}} \right)\end{aligned}\)

02

Computing the point \({{\bf{x}}_{\bf{n}}}\)and \({{\bf{v}}_{\bf{n}}}\)

One will compute the points \(\left( {{x_n},{v_n}} \right)\) for\({\bf{n = }}\overline {{\bf{0,20}}} \). The values for\({x_n},{v_n}\) are given in the table below.

\(\begin{aligned}{*{20}{l}}{{{\bf{x}}_{\bf{n}}}}&{{{\bf{v}}_{\bf{n}}}}\\{{\bf{ - 1}}{\bf{.06006}}}&{{\bf{0}}{\bf{.577026}}}\\{{\bf{ - 0}}{\bf{.599846}}}&{{\bf{0}}{\bf{.149443}}}\\{{\bf{ - 1}}{\bf{.2423}}}&{{\bf{0}}{\bf{.228101}}}\\{{\bf{ - 1}}{\bf{.10342}}}&{{\bf{0}}{\bf{.304278}}}\\{{\bf{ - 0}}{\bf{.997156}}}&{{\bf{0}}{\bf{.25437}}}\\{{\bf{ - 1}}{\bf{.07409}}}&{{\bf{0}}{\bf{.255012}}}\\{{\bf{ - 1}}{\bf{.0703}}}&{{\bf{0}}{\bf{.267285}}}\\{{\bf{ - 1}}{\bf{.05249}}}&{{\bf{0}}{\bf{.262264}}}\\{{\bf{ - 1}}{\bf{.06049}}}&{{\bf{0}}{\bf{.261172}}}\\{{\bf{ - 1}}{\bf{.0618}}}&{{\bf{0}}{\bf{.262864}}}\\{{\bf{ - 1}}{\bf{.05927}}}&{{\bf{0}}{\bf{.262468}}}\\{{\bf{ - 1}}{\bf{.05994}}}&{{\bf{0}}{\bf{.2622}}}\\{{\bf{ - 1}}{\bf{.06031}}}&{{\bf{0}}{\bf{.262406}}}\\{{\bf{ - 1}}{\bf{.06}}}&{{\bf{0}}{\bf{.262392}}}\\{{\bf{ - 1}}{\bf{.06003}}}&{{\bf{0}}{\bf{.262346}}}\\{{\bf{ - 1}}{\bf{.0601}}}&{{\bf{0}}{\bf{.262367}}}\\{{\bf{ - 1}}{\bf{.06006}}}&{{\bf{0}}{\bf{.26237}}}\\{{\bf{ - 1}}{\bf{.06006}}}&{{\bf{0}}{\bf{.262364}}}\\{{\bf{ - 1}}{\bf{.06007}}}&{{\bf{0}}{\bf{.262366}}}\\{{\bf{ - 1}}{\bf{.06006}}}&{{\bf{0}}{\bf{.262367}}}\\{{\bf{ - 1}}{\bf{.06006}}}&{{\bf{0}}{\bf{.262366}}}\end{aligned}\)

03

Finding the Poincare section’s point

The Poincare section is given in the figure below.

\(\begin{aligned}{c}\mathop {\lim }\limits_{n \to \infty } {x_n}{\bf{ = - 1}}{\bf{.060}}\\\mathop {\lim }\limits_{n \to \infty } {v_n}{\bf{ = 0}}{\bf{.2624}}\end{aligned}\)

So, the Poincare section converges to the point \(\left( {{\bf{ - 1}}.0604,0.2624} \right){\bf{ - }}\) red point, and that point is the attractor for this system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free