Show that for\({\bf{b > 0}}\), the Poincare map for the equation \(\left( 4 \right)\) is not chaotic by showing that as \({\bf{t}}\) gets large

\(\begin{aligned}{c}{x_n}{\bf{ = }}x(2\pi n) \approx \frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\sin (2\pi n{\bf{ + }}\theta )\\{v_n}{\bf{ = x}}'(2\pi n) \approx \frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\cos (2\pi n{\bf{ + }}\theta )\end{aligned}\)

Independent of the initial values\({{\bf{x}}_{\bf{0}}}{\bf{ = x(0),}}{{\bf{v}}_{\bf{0}}}{\bf{ = x}}'{\bf{(0)}}\).

Short Answer

Expert verified

Use that \(Sine\) and \(Cosine\) functions are \(2\pi {\bf{ - }}\)periodic\({x_n}{\bf{ = }}\frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\sin \theta \)and\({v_n}{\bf{ = }}\frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\cos \theta \)

Step by step solution

01

Finding sine periodic

Since\(Sine\)the function is \(2\pi {\bf{ - }}\)periodic.

\({x_n}{\bf{ = }}x(2\pi n) \approx \frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\sin (2\pi n{\bf{ + }}\theta ){\bf{ = }}\frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\sin \theta \)

02

Finding cosine’s periotic

Since \(Cosine\) is also \(2\pi {\bf{ - }}\)periodic.

\({v_n}{\bf{ = }}x'(2\pi n) \approx \frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\cos (2\pi n{\bf{ + }}\theta ){\bf{ = }}\frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\cos \theta \)

Therefore,\(\left( {{x_n},{v_n}} \right)\) is one point \(\left( {\frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\sin \theta ,\frac{F}{{\sqrt {{{\left( {{\omega ^2}{\bf{ - }}1} \right)}^2}{\bf{ + }}{b^2}} }}\cos \theta } \right)\) for all \(n = 1,2,3, \ldots \)i.e., the Poincare map is not chaotic.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free