Chapter 5: Q8RP (page 306)
write the given higher-order equation or system in an equivalent normal form (compare Section\({\bf{5}}.{\bf{3}}\)).
\(2y'' - ty' + 8y = \sin t\)
Short Answer
The solution for the given is:
\(\begin{array}{l}{{\bf{x}}_{\bf{1}}}{\bf{'(t) = }}{{\bf{x}}_{\bf{2}}}{\bf{(t)}}\\{{\bf{x}}_{\bf{2}}}{\bf{'(t) = }}\frac{{{\bf{sint}}}}{{\bf{2}}}{\bf{ + }}\frac{{\bf{t}}}{{\bf{2}}}{{\bf{x}}_{\bf{2}}}{\bf{ - 4}}{{\bf{x}}_{\bf{1}}}\end{array}\)