Chapter 5: Q9E (page 294)
Because of Euler's formula, \({e^{{\bf{i}}\theta }}{\bf{ = cos}}\theta {\bf{ + isin}}\theta \), it is often convenient to treat the voltage sources \({E_{\bf{0}}}\cos \gamma t\)and \({E_{\bf{0}}}{\bf{sin}}\gamma {\bf{t}}\)simultaneously, use them\(E(t){\bf{ = }}{E_0}{e^{i\gamma t}}\). In this case, the equation \(\left( {\bf{3}} \right)\)becomes\({\bf{L}}\frac{{{{\bf{d}}^{\bf{2}}}{\bf{q}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ + R}}\frac{{{\bf{dq}}}}{{{\bf{dt}}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{C}}}{\bf{q = }}{{\bf{E}}_{\bf{0}}}{e^{i\gamma {\bf{t}}}}\), where \({\bf{q}}\) is now complex (recall\(I{\bf{ = q',I' = }}q''\)).
- Use the method of undetermined coefficients to show that the steady-state solution to \(\left( {{\bf{22}}} \right)\)is\({q_p}(t) = \frac{{{E_0}}}{{\frac{{\bf{1}}}{{\bf{C}}} - {\gamma ^2}L{\bf{ + }}i\gamma R}}{e^{i\gamma t}}\). The technique is discussed in detail in Project \({\bf{F}}\) of Chapter\({\bf{4}}\), page\({\bf{237}}\).
- Now show that the steady-state current is\({I_p}(t) = \frac{{{E_0}}}{{R{\bf{ + }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}}{e^{i\gamma t}}\)
- Use the relation\(\alpha + i\beta {\bf{ = }}\sqrt {{\alpha ^2}{\bf{ + }}{\beta ^2}} {e^{i\theta }}\), where \(tan\theta {\bf{ = }}\frac{\beta }{\alpha }\), to show that \({I_p}\)can be expressed in the form\({I_p}(t) = \frac{{{E_0}}}{{\sqrt {{R^2}{\bf{ + }}{{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}} }}{e^{i(\gamma t{\bf{ + }}\theta )}}\), where \(\tan \theta {\bf{ = }}\frac{{\left( {\frac{1}{C} - L{\gamma ^2}} \right)}}{{(\gamma R)}}\).
- The imaginary part of \({e^{i\gamma t}}\)is \(\sin \gamma t\), so the imaginary part of the solution to \(\left( {{\bf{22}}} \right)\) must be the solution to the equation \(\left( {\bf{3}} \right)\) for \(E(t){\bf{ = }}{E_0}\sin \gamma t\). Verify that this is also the case for the current by showing that the imaginary part of \({I_p}\) in part \(\left( {\bf{c}} \right)\) is the same as that given in the equation \(\left( {{\bf{10}}} \right)\).
Short Answer
- Assuming that a particular solution for \(q\) has a form of \({q_p}(t){\bf{ = }}A{e^{i\gamma t}}\)one gets that\(A\left( {\frac{1}{C}{\bf{ - }}{\gamma ^2}L{\bf{ + }}i\gamma R} \right){e^{i\gamma t}}{\bf{ = }}{E_0}{e^{i\gamma t}}\), and solving the previous equation for \({\bf{A}}\)one has that\({q_p}(t){\bf{ = }}A{e^{i\gamma t}}{\bf{ = }}\frac{{{E_0}}}{{\frac{1}{C} - {\gamma ^2}L + i\gamma R}}{e^{i\gamma t}}\).
- Assuming that the steady-state current has a form of \({I_p}(t){\bf{ = }}B{e^{i\gamma t}}\) and solving for the constant \(B\) we get that\({I_p}(t){\bf{ = }}\frac{{{E_0}}}{{R{\bf{ + }}i(\gamma L - \frac{1}{{(\gamma C)}})}}{e^{i\gamma t}}\).
- One can apply relation \(\alpha {\bf{ + }}i\beta {\bf{ = }}\sqrt {{a^2}{\bf{ + }}{b^2}} {e^{i\theta }}\)where \(\tan \theta {\bf{ = }}\frac{\beta }{\alpha }\)for \(\alpha {\bf{ = }}R\)and \(\beta {\bf{ = }}\frac{1}{{(\gamma C)}}{\bf{ - }}\gamma L\) transform the particular solution \({I_p}\)obtained in part \(\left( {\bf{b}} \right)\)to\({I_p}(t){\bf{ = }}\frac{{{E_0}}}{{\sqrt {{R^2} + {{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}} }}{e^i}\)where\(\tan \theta {\bf{ = }}\frac{{\frac{1}{C}{\bf{ - }}L{\gamma ^2}}}{{\gamma R}}\).
- Show that the imaginary part of \({I_p}(t)\)from part \(\left( {\bf{c}} \right)\) is identical to the solution given in the equation\(\left( {{\bf{10}}} \right)\).