Because of Euler's formula, \({e^{{\bf{i}}\theta }}{\bf{ = cos}}\theta {\bf{ + isin}}\theta \), it is often convenient to treat the voltage sources \({E_{\bf{0}}}\cos \gamma t\)and \({E_{\bf{0}}}{\bf{sin}}\gamma {\bf{t}}\)simultaneously, use them\(E(t){\bf{ = }}{E_0}{e^{i\gamma t}}\). In this case, the equation \(\left( {\bf{3}} \right)\)becomes\({\bf{L}}\frac{{{{\bf{d}}^{\bf{2}}}{\bf{q}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ + R}}\frac{{{\bf{dq}}}}{{{\bf{dt}}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{C}}}{\bf{q = }}{{\bf{E}}_{\bf{0}}}{e^{i\gamma {\bf{t}}}}\), where \({\bf{q}}\) is now complex (recall\(I{\bf{ = q',I' = }}q''\)).

  1. Use the method of undetermined coefficients to show that the steady-state solution to \(\left( {{\bf{22}}} \right)\)is\({q_p}(t) = \frac{{{E_0}}}{{\frac{{\bf{1}}}{{\bf{C}}} - {\gamma ^2}L{\bf{ + }}i\gamma R}}{e^{i\gamma t}}\). The technique is discussed in detail in Project \({\bf{F}}\) of Chapter\({\bf{4}}\), page\({\bf{237}}\).
  2. Now show that the steady-state current is\({I_p}(t) = \frac{{{E_0}}}{{R{\bf{ + }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}}{e^{i\gamma t}}\)
  3. Use the relation\(\alpha + i\beta {\bf{ = }}\sqrt {{\alpha ^2}{\bf{ + }}{\beta ^2}} {e^{i\theta }}\), where \(tan\theta {\bf{ = }}\frac{\beta }{\alpha }\), to show that \({I_p}\)can be expressed in the form\({I_p}(t) = \frac{{{E_0}}}{{\sqrt {{R^2}{\bf{ + }}{{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}} }}{e^{i(\gamma t{\bf{ + }}\theta )}}\), where \(\tan \theta {\bf{ = }}\frac{{\left( {\frac{1}{C} - L{\gamma ^2}} \right)}}{{(\gamma R)}}\).
  4. The imaginary part of \({e^{i\gamma t}}\)is \(\sin \gamma t\), so the imaginary part of the solution to \(\left( {{\bf{22}}} \right)\) must be the solution to the equation \(\left( {\bf{3}} \right)\) for \(E(t){\bf{ = }}{E_0}\sin \gamma t\). Verify that this is also the case for the current by showing that the imaginary part of \({I_p}\) in part \(\left( {\bf{c}} \right)\) is the same as that given in the equation \(\left( {{\bf{10}}} \right)\).

Short Answer

Expert verified
  1. Assuming that a particular solution for \(q\) has a form of \({q_p}(t){\bf{ = }}A{e^{i\gamma t}}\)one gets that\(A\left( {\frac{1}{C}{\bf{ - }}{\gamma ^2}L{\bf{ + }}i\gamma R} \right){e^{i\gamma t}}{\bf{ = }}{E_0}{e^{i\gamma t}}\), and solving the previous equation for \({\bf{A}}\)one has that\({q_p}(t){\bf{ = }}A{e^{i\gamma t}}{\bf{ = }}\frac{{{E_0}}}{{\frac{1}{C} - {\gamma ^2}L + i\gamma R}}{e^{i\gamma t}}\).
  2. Assuming that the steady-state current has a form of \({I_p}(t){\bf{ = }}B{e^{i\gamma t}}\) and solving for the constant \(B\) we get that\({I_p}(t){\bf{ = }}\frac{{{E_0}}}{{R{\bf{ + }}i(\gamma L - \frac{1}{{(\gamma C)}})}}{e^{i\gamma t}}\).
  3. One can apply relation \(\alpha {\bf{ + }}i\beta {\bf{ = }}\sqrt {{a^2}{\bf{ + }}{b^2}} {e^{i\theta }}\)where \(\tan \theta {\bf{ = }}\frac{\beta }{\alpha }\)for \(\alpha {\bf{ = }}R\)and \(\beta {\bf{ = }}\frac{1}{{(\gamma C)}}{\bf{ - }}\gamma L\) transform the particular solution \({I_p}\)obtained in part \(\left( {\bf{b}} \right)\)to\({I_p}(t){\bf{ = }}\frac{{{E_0}}}{{\sqrt {{R^2} + {{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}} }}{e^i}\)where\(\tan \theta {\bf{ = }}\frac{{\frac{1}{C}{\bf{ - }}L{\gamma ^2}}}{{\gamma R}}\).
  4. Show that the imaginary part of \({I_p}(t)\)from part \(\left( {\bf{c}} \right)\) is identical to the solution given in the equation\(\left( {{\bf{10}}} \right)\).

Step by step solution

01

Using the method of undetermined coefficients

One will find a particular solution using the method of undetermined coefficients.

Assume that a particular solution for \(q\) has a form of\({q_p}(t) = A{e^{i\gamma t}}\)

Then

Substituting this into the given differential equation one will obtain a value for the constant\(A\).

\(\begin{aligned}{c}L\frac{{{d^2}{q_p}}}{{d{t^2}}}{\bf{ + }}R\frac{{d{q_p}}}{{dt}}{\bf{ + }}\frac{1}{C}{q_p}{\bf{ = }}L\left( {{\bf{ - }}{\gamma ^2}A{e^{i\gamma t}}} \right){\bf{ + }}R \cdot i\gamma A{e^{i\gamma t}}{\bf{ + }}\frac{1}{C}A{e^{i\gamma t}}\\{\bf{ = }}A\left( {{\bf{ - }}{\gamma ^2}L{\bf{ + }}iR\gamma {\bf{ + }}\frac{1}{C}} \right){e^{i\gamma t}}\\{\bf{ = }}{E_0}{e^{i\gamma t}}\end{aligned}\)

02

Step 2:Substituting the value of \({\bf{A}}\)

Dividing the previous equation by \({e^{i\gamma t}}\)one will get

\(\begin{aligned}{c}A\left( {{\bf{ - }}{\gamma ^2}L + iR\gamma {\bf{ + }}\frac{1}{C}} \right){\bf{ = }}{E_0}\\A{\bf{ = }}\frac{{{E_0}}}{{\frac{1}{C}{\bf{ - }}{\gamma ^2}L{\bf{ + }}i\gamma R}}\end{aligned}\)

Substituting the derived value for \(A\)one has that the particular solution for \(q\) is\({q_p}(t){\bf{ = }}\frac{{{E_0}}}{{\frac{1}{C}{\bf{ - }}{\gamma ^2}L{\bf{ + }}i\gamma R}}{e^{i\gamma t}}\).

03

Step 3:Finding the steady-state current

The corresponding differential equation for the current is:

\(\begin{aligned}{c}L\frac{{{d^2}I}}{{d{t^2}}}{\bf{ + }}R\frac{{dI}}{{dt}}{\bf{ + }}\frac{1}{C}I{\bf{ = }}\frac{d}{{dt}}\left( {{E_0}{e^{i\gamma t}}} \right)\\L\frac{{{d^2}I}}{{d{t^2}}} + R\frac{{dI}}{{dt}}{\bf{ + }}\frac{1}{C}I{\bf{ = }}i\gamma {E_0}{e^{i\gamma t}}\end{aligned}\)

One will use the method of undetermined coefficients to find the steady-state current.

Assume that\({I_p}(t) = B{e^{i\gamma t}}\). Then

\(I_p {}'(r) = i\gamma B{e^{i\gamma t}},\;\;\;I_p {}''(t){\bf{ = - }}{\gamma ^2}B{e^{i\gamma t}}\).

As before, one will substitute this into the differential equation for current and obtain a value for\(B\):

\(\begin{aligned}{c}L\frac{{{d^2}{I_p}}}{{d{t^2}}}{\bf{ + }}R\frac{{d{I_p}}}{{dt}}{\bf{ + }}\frac{1}{C}{I_p}{\bf{ = }}L\left( {{\bf{ - }}{\gamma ^2}B{e^{i\gamma t}}} \right){\bf{ + }}R \cdot i\gamma B{e^{i\gamma t}}{\bf{ + }}\frac{1}{C}B{e^{i\gamma t}}\\{\bf{ = }}B\left( {{\bf{ - }}{\gamma ^2}L{\bf{ + }}iR\gamma {\bf{ + }}\frac{1}{C}} \right){e^{i\gamma t}}\\{\bf{ = }}i\gamma {E_0}{e^{i\gamma t}}\end{aligned}\)

04

Finding the value of \({\bf{B}}\)

Dividing the previous equation by \({e^{i\gamma t}}\)one will get a value for \(B\):

\(\begin{aligned}{c}B\left( { - {\gamma ^2}L{\bf{ + }}iR\gamma {\bf{ + }}\frac{1}{C}} \right){\bf{ = }}i\gamma {E_0}\\B{\bf{ = }}\frac{{i\gamma {E_0}}}{{\frac{1}{C} - {\gamma ^2}L + i\gamma R}}\\B{\bf{ = }}\frac{{{E_0}}}{{\frac{1}{{i\gamma C}}{\bf{ - }}\frac{{{\gamma ^2}L}}{{i\gamma }}{\bf{ + }}\frac{{i\gamma R}}{{i\gamma }}}}\\B = \frac{{{E_0}}}{{R{\bf{ + }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}}\end{aligned}\)

And now substituting the value for \(B\) we will get that the steady-state current is\({I_p}(t){\bf{ = }}\frac{{{E_0}}}{{R{\bf{ + }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}}{e^{i\gamma t}}\)

05

To prove the given \({I_p}\)

One will transform the steady-state current that one obtains in part\(\left( {\bf{b}} \right)\):

\(\begin{aligned}{c}{I_p}(t){\bf{ = }}\frac{{{E_0}}}{{R{\bf{ + }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}}{e^{i\gamma t}}\\{\bf{ = }}\frac{{{E_0}(R{\bf{ - }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}}{{(R{\bf{ + }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}}))(R{\bf{ - }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}}))}}{e^{i\gamma t}}\\{\bf{ = }}\frac{{{E_0}(R{\bf{ - }}i(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}}{{{R^2}{\bf{ + }}{{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}}}{e^{i\gamma t}}\end{aligned}\)

One can apply the given relation\(\alpha {\bf{ + }}i\beta {\bf{ = }}\sqrt {{\alpha ^2}{\bf{ + }}{\beta ^2}} {e^{i\theta }}\), where \(\tan \theta {\bf{ = }}\frac{\beta }{\alpha }\) for \(\alpha {\bf{ = }}R\) and\(\beta {\bf{ = - }}(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}}){\bf{ = }}\frac{1}{{(\gamma C)}}{\bf{ - }}\gamma L\). So, one has

\(\begin{aligned}{c}{I_p}(t){\bf{ = }}\frac{{{E_0}\sqrt {{R^2}{\bf{ + }}{{(\frac{1}{{(\gamma C)}} - \gamma L)}^2}} {e^{i\theta }}}}{{{R^2}{\bf{ + }}{{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}}}{e^{i\gamma t}}\\{\bf{ = }}\frac{{{E_0}}}{{\sqrt {{R^2}{\bf{ + }}{{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}} }}{e^{i(\gamma t{\bf{ + }}\theta )}}\end{aligned}\),

Where\(\tan \theta {\bf{ = }}\frac{{\frac{1}{{(\gamma C)}} - \gamma L}}{R}{\bf{ = }}\frac{{\frac{1}{C}{\bf{ - }}L{\gamma ^2}}}{{\gamma R}}\).

06

Finding the imaginary part of \({I_p}\)

Let's rewrite the steady-state current obtained in part \(\left( {\bf{c}} \right)\)

\(\begin{aligned}{c}{I_p}(t){\bf{ = }}\frac{{{E_0}}}{{\sqrt {{R^2}{\bf{ + }}{{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}} }}{e^{i(\gamma t{\bf{ + }}\theta )}}\\{\bf{ = }}\frac{{{E_0}}}{{\sqrt {{R^2}{\bf{ + }}{{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}} }}(\cos (\gamma t{\bf{ + }}\theta ) + i\sin (\gamma t{\bf{ + }}\theta ))\end{aligned}\)

Where\(\tan \theta = \frac{{\frac{1}{C}{\bf{ - }}L{\gamma ^2}}}{{\gamma R}}\). Now it is easy to see that the imaginary part of \({I_p}\) is\({\mathop{\rm Im}\nolimits} \left( {{I_p}(t)} \right){\bf{ = }}\frac{{{E_0}\sin (\gamma t + \theta )}}{{\sqrt {{R^2}{\bf{ + }}{{(\gamma L{\bf{ - }}\frac{1}{{(\gamma C)}})}^2}} }}\)where \(\tan \theta {\bf{ = }}\frac{{\frac{1}{C}{\bf{ - }}L{\gamma ^2}}}{{\gamma R}}\)which is identical to the solution given in the equation \(\left( {{\bf{10}}} \right)\)in the textbook, that one wants to show.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free