The doubling modulo \({\bf{1}}\) map defined by the equation \(\left( {\bf{9}} \right)\)exhibits some fascinating behavior. Compute the sequence obtained when

  1. \({{\bf{x}}_0}{\bf{ = k / 7}}\)for\({\bf{k = 1,2, \ldots ,6}}\).
  2. \({{\bf{x}}_0}{\bf{ = k / 15}}\)for\({\bf{k = 1,2, \ldots ,14}}\).
  3. \({{\bf{x}}_{\bf{0}}}{\bf{ = k/}}{{\bf{2}}^{\bf{j}}}\), where \({\bf{j}}\)is a positive integer and \({\bf{k = 1,2, \ldots ,}}{{\bf{2}}^{\bf{j}}}{\bf{ - 1}}{\bf{.}}\)

Numbers of the form \({\bf{k/}}{{\bf{2}}^{\bf{j}}}\) are called dyadic numbers and are dense in \(\left( {{\bf{0,1}}} \right){\bf{.}}\)That is, there is a dyadic number arbitrarily close to any real number (rational or irrational).

Short Answer

Expert verified
  1. For \({x_0} = \frac{k}{7}\)one obtains two sequences, \(\left\{ {\frac{1}{7},\frac{2}{7},\frac{4}{7},\frac{1}{7}, \ldots } \right\}\)and \(\left\{ {\frac{3}{7},\frac{6}{7},\frac{5}{7},\frac{3}{7}, \ldots } \right\}\)
  2. For \({x_0} = \frac{k}{{15}}\)where \(k = \overline {1,14} \)one gets four sequences,

\(\left\{ {\frac{1}{{15}},\frac{2}{{15}},\frac{4}{{15}},\frac{8}{{15}}} \right\}\left\{ {\frac{1}{5},\frac{2}{5},\frac{4}{5},\frac{3}{5},\frac{1}{5}, \ldots } \right\},\left\{ {\frac{1}{3},\frac{2}{3},\frac{1}{3}, \ldots } \right\}\)and \(\left\{ {\frac{7}{{15}},\frac{{14}}{{15}},\frac{{13}}{{15}},\frac{{11}}{{15}},\frac{7}{{15}}, \ldots } \right\}\)

  1. \({x_n} = 0\)for\(n \ge j\)for any\(k = 1,2, \ldots ,{2^j} - 1\).

Step by step solution

01

Defining the map

For \({x_0} \in {\rm{(}}0,1{\rm{)}},\)

One has a map defined by:\({x_{n + 1}} = 2{x_n}\left( {\bmod \,1} \right) = \left\{ {\begin{aligned}{*{20}{l}}{2{x_n},\,\,{\rm{for}}\,\,0\pounds{x_n} < \frac{1}{2}}\\{2{x_n} - 1,\,\,{\rm{for}}\,\,\frac{1}{2}\pounds{x_n} < 1}\end{aligned}} \right.\)

In this case\({x_0} = \frac{k}{7}\), for\(k = \overline {1,6} \). So let's first\(k = 1\).

One has:

\(\begin{aligned}{c}{x_0} &= 1/7,\\{x_2} &= 2 \times \left( {1/7} \right)\left( {\bmod \,1} \right) = 2/7\\{x_3} &= 2 \times \left( {2/7} \right)\left( {\bmod \,1} \right) &= 4/7\\{x_4} &= 2 \times \left( {4/7} \right)\left( {\bmod \,1} \right) &= 8/7 - 1 &= 1/7\\{x_5} &= 2 \times \left( {1/7} \right)\left( {\bmod \,1} \right) &= 2/7, \ldots \end{aligned}\)

02

Substitute the value for \({\bf{k = 2,k = 3}}\)

One obtained the sequence \(\left\{ {\frac{1}{7},\frac{2}{7},\frac{4}{7},\frac{1}{7}, \ldots } \right\}\)

For \(k = 2\) one has:

\(\begin{aligned}{c}{x_0} &= 2/7\\{x_1} = 2 \times \left( {2/7} \right)\left( {\bmod \,1} \right) &= 4/7\\{x_2} &= 2 \times \left( {4/7} \right)\left( {\bmod \,1} \right) &= 8/7 - 1 &= 1/7\\{x_3} &= 2 \times \left( {1/7} \right)\left( {\bmod \,1} \right) &= 2/7\\{x_4} &= 2 \times \left( {2/7} \right)\left( {\bmod \,1} \right) &= 4/7, \ldots \end{aligned}\)

Similarly, to the first case, one gets the sequence \(\left\{ {\frac{2}{7},\frac{4}{7},\frac{1}{7},\frac{2}{7}, \ldots } \right\}\)

Let \(k = 3\):

\(\begin{aligned}{l}{x_0} &= 3/7\\{x_1} = 2 \times \left( {3/7} \right)\left( {\bmod \,1} \right) = 6/7\\{x_2} &= 2 \times \left( {6/7} \right)\left( {\bmod \,1} \right) &= 12/7 - 1 &= 5/7\\{x_3} &= 2 \times \left( {5/7} \right)\left( {\bmod \,1} \right) &= 10/7 - 1 &= 3/7, \ldots \end{aligned}\)

03

Substitute the value for \({\bf{k = 4,k = 5,k = 6}}\)

Now, one gets the sequence \(\left\{ {\frac{3}{7},\frac{6}{7},\frac{5}{7},\frac{3}{7}, \ldots } \right\}\)

When \(k = 4\)one has

\(\begin{aligned}{l}{x_0} &= 4/7\\{x_1} &= 2 \times 4/7\left( {\bmod \,1} \right) &= 8/7 - 1 &= 1/7\\{x_2} &= 2 \times \left( {1/7} \right)\left( {\bmod \,1} \right) &= 2/7\\{x_3} &= 2 \times \left( {2/7} \right)\left( {\bmod \,1} \right) &= 4/7, \ldots \end{aligned}\)

So, once again one obtains the sequence \(\left\{ {\frac{4}{7},\frac{1}{7},\frac{2}{7},\frac{4}{7}, \ldots } \right\}\).

It is easy to see that for \(k = 5,{\bf{ }}k = 6\) one will obtain the second sequence, \(\left\{ {\frac{5}{7},\frac{3}{7},\frac{6}{7},\frac{5}{7}, \ldots } \right\}\) and \(\left\{ {\frac{6}{7},\frac{5}{7},\frac{3}{7},\frac{6}{7}, \ldots } \right\},\) for \(k = 5,{\bf{ }}k = 6,\)respectively, but one will do explicit calculation because this is the first example.

04

Step 4:Substitute the value for \({\bf{x}}\)

No one has that \({x_0} = k{\bf{ }}/{\bf{ }}15,\) where \(k = \overline {1,14} .\)Let's find the sequence for \(k = 1\,{\rm{:}}\)

\(\begin{aligned}{l}{x_0} &= 1/15\\{x_1} &= 2 \times \left( {1/15} \right)\left( {\bmod \,1} \right) &= 2/15\\{x_2} &= 2 \times \left( {2/15} \right)\left( {\bmod \,1} \right) &= 4/15\\{x_3} &= 2 \times \left( {4/15} \right)\left( {\bmod \,1} \right) &= 8/15\\{x_4} &= 2 \times \left( {8/15} \right)\left( {\bmod \,1} \right) &= 16/15 - 1 &= 1/15, \ldots \end{aligned}\)

So, one obtains the sequence \(\left\{ {1{\bf{ }}/{\bf{ }}15,2{\bf{ }}/{\bf{ }}15,4{\bf{ }}/{\bf{ }}15,8{\bf{ }}/{\bf{ }}15} \right\}\)and one can conclude that one will get the same sequence for \(k = 2,4,8.\)

When \(k = 3,\) one has

\(\begin{aligned}{l}{x_0} &= 3/15 &= 1/5\\{x_1} &= 2 \times \left( {1/5} \right)\left( {\bmod \,1} \right) &= 2/5 &= 6/15\\{x_2} &= 2 \times \left( {2/5} \right)\left( {\bmod \,1} \right) = 4/5 &= 12/15\\{x_3} &= 2 \times \left( {4/5} \right)\left( {\bmod \,1} \right) &= 8/5 - 1 &= 3/5 &= 9/15\\{x_4} &= 2 \times \left( {3/5} \right)\left( {\bmod \,1} \right) &= 6/5 - 1 &= 1/5 &= 3/15, \ldots \end{aligned}\)

05

Substitute the value for \({\bf{x}}\)

For \(k = 3\) one gets the sequence \(\left\{ {1/5,2/5,4/5,3/5,1/5, \ldots } \right\}\)and one will get the same sequence for \(k = 6,12,9\).

Now, one will find the sequence for \(k = 5.\)

\({x_0} = 5{\bf{ }}/{\bf{ }}15 = 1{\bf{ }}/{\bf{ }}3,\)

\(\begin{aligned}{c}{x_1} &= 2 \times \left( {1/3} \right)\left( {\bmod \,1} \right) &= 2/3 &= 10/15,{\bf{ }}\\{x_2} &= 2 \times \left( {2/3} \right)\left( {\bmod \,1} \right) &= 4/3 - 1 &= 1/3 &= 5/15, \ldots \end{aligned}\)

So, for \(k = 5,10\)one has the sequence \(\left\{ {1/3,2/3,1/3, \ldots } \right\}.\)

When \(k = 7,\) one has:

\(\begin{aligned}{l}{x_0} &= 7/15,\\{x_1} &= 2 \times \left( {7/15} \right)\left( {\bmod \,1} \right) &= 14/15\\{x_2} &= 2 \times \left( {14/15} \right)\left( {\bmod \,1} \right) &= 28/15 - 1 &= 13/15\\{x_3} &= 2 \times \left( {13/15} \right)\left( {\bmod \,1} \right) &= 26/15 - 1 &= 11/15\\{x_4} &= 2 \times \left( {11/15} \right)\left( {\bmod \,1} \right) &= 22/15 - 1 &= 7/15, \ldots \end{aligned}\)

This gives us that for \(k = 7,14,13,11\)one has the sequence

\(\left\{ {7/15,14/15,13/15,11/15,7/15, \ldots } \right\}.\)

06

Substituting the values for \({\bf{k}}\)

In this part \({x_0} = \frac{k}{{{2^j}}},\)where \(k = 1,2, \ldots ,{2^j} - 1\)and \(j\) is some positive integer. Let first \(k = 1\). Then

\(\begin{aligned}{c}{x_0} &= \frac{1}{{{2^j}}},\\{x_1} &= 2 \times \left( {\frac{1}{{{2^j}}}} \right)(\,\bmod \,1) &= \frac{1}{{{2^{j - 1}}}},\\{x_2} &= 2 \times \left( {\frac{1}{{{2^{j - 1}}}}} \right)(\,\bmod \,1) &= {2^2} \times \left( {\frac{1}{{{2^j}}}} \right)(\,\bmod \,1) &= \frac{1}{{{2^{j - 2}}}},\\M{x_{j - 1}} &= 2 \times \frac{1}{4}(\,\bmod \,1) &= {2^{j - 1}} \times \left( {\frac{1}{{{2^j}}}} \right)(\,\bmod \,1) &= \frac{1}{2},\end{aligned}\)

\(\begin{aligned}{c}{x_j} &= 2 \times \frac{1}{2}(\,\bmod \,1) &= {2^j} \times \left( {\frac{1}{{{2^j}}}} \right)(\,\bmod \,1) &= 1 - 1 &= 0,\\{x_{j + 1}} &= 2 \times 0(\,\bmod \,1) &= 0, \ldots \end{aligned}\)

07

Finding \({{\bf{x}}_{\bf{0}}}{\bf{,}}{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}\)

One obtains that \({x_n} = 0\)for \(n \ge j\)and the sequence will be

\(\left\{ {1/{2^j},1/{2^{j - 1}}, \ldots ,1/2,0,0, \ldots } \right\}\)

When \(k = 2\) one has a similar problem: then \({x_0} = \frac{2}{{{2^j}}} = \frac{1}{{{2^{j - 1}}}},\) so in this case the sequence is \(\left\{ {1/{2^{j - 1}},1/{2^{j - 2}}, \ldots ,1/2,0,0, \ldots } \right\}\). In fact, whenever \(k\) is even, one will have that \({x_n} = 0\)for some \(n\). The bigger \(n\) is, one will have fewer non-zero values. So, one can claim with certainty that \({x_n} = 0\)when \(n \ge j\) for any event \(k\). One can expect that when \(k\) is odd one will have a similar sequence as when \(k\) is even.

Let \(k = {2^l} - 1\) for some \(l = \overline {2,j} .\)So \({x_0} = \frac{{\left( {{2^l} - 1} \right)}}{{{2^j}}}\) If \({x_0} < \frac{1}{2}\)then

\({x_1} = 2 \times {x_0}\left( {\bmod \,1} \right) = \frac{{2 \times \left( {{2^l} - 1} \right)}}{{{2^j}}}\left( {\bmod \,1} \right) = \frac{{\left( {{2^l} - 1} \right)}}{{{2^{j - 1}}}}\)

Again, if \({x_1} < \frac{1}{2}\) one will have that\({x_2} = 2 \times {x_1}\left( {\bmod \,1} \right) = {2^2} \times {x_0}\left( {\bmod \,1} \right) = \frac{{\left( {{2^l} - 1} \right)}}{{{2^{j - 2}}}}\)

08

Finding \({{\bf{n}}_{\bf{0}}}\)

One wants to know what happens when \({x_i} \ge \frac{1}{2},\)and one knows that at some point that must occur. Assume that \({x_{{n_0}}}\)is the first time one obtains a value that is greater or equal to \(\frac{1}{2}\). Let’s find the \({n_0}\)in terms of \(l\) and \(j\):

\({x_{{n_0}}} = 2 \times {x_{{n_0} - 1}}\left( {\bmod \,1} \right) = {2^{{n_0}}} \times {x_0} = \frac{{{2^{{n_0}}}\left( {{2^l} - 1} \right)}}{{{2^j}}} = \frac{{{2^l} - 1}}{{{2^{j - {n_0}}}}} > \frac{1}{2}\)

Multiplying the previous equation by \(2\)one will get:

So, now one has that\({x_{{n_0}}} = {2^{j - l}}\frac{{{2^l} - 1}}{{{2^j}}} = \frac{{{2^l} - 1}}{{{2^l}}}\)

09

Finding the values for odd \({\bf{k}}\)

Now, one has that:

\(\begin{aligned}{c}{x_{{n_0} + 2}} &= 2 \times {x_{{n_0} + 1}}\left( {\bmod \,1} \right) &= 2\frac{{{2^{l - 1}} - 1}}{{{2^{l - 1}}}} - 1 &= \frac{{{2^{l - 1}} - 1 - {2^{l - 2}}}}{{{2^{l - 2}}}}\\ = \frac{{{2^{l - 2}}\left( {2 - 1} \right) - 1}}{{{2^l} - 2}} &= \frac{{{2^{l - 2}} - 1}}{{{2^{l - 2}}}},\end{aligned}\)

\({x_{{n_0} + l}} = 2 \times {x_{{n_0} + l - 1}}\left( {\bmod \,1} \right) = \frac{{{2^{l - l}} - 1}}{{{2^{l - l}}}} = \frac{0}{1} = 0\)

\({x_{{n_0} + l + 1}} = 2 \times {x_{{n_0} + l}}\left( {\bmod \,1} \right) = 2 \times 0 = 0, \ldots \)

As expected, one has only finitely many non-zero values in the sequence when k is odd. Since \({n_0} + l\)is the first zero value, and \({n_0} = j - l,\) one has that the first zero value is for \(n = j + l - l = j\). This means that \({x_n} = 0\)for \(n \ge j\)for any \(k = 1,2, \ldots ,{2^j} - 1\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free