Use Euler’s method with step size \[{\bf{h = }}\frac{{\bf{1}}}{{\bf{2}}}\] to approximate the solution to the initial value problem \[\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ = x - }}{{\bf{y}}^{\bf{2}}}{\bf{,}}\;{\bf{y(1) = 2}}\] at x = 2.

Short Answer

Expert verified

The solution is for h = 0.5 at x = 2 is 1.125.

Step by step solution

01

Using Euler’s method

\[\begin{array}{l}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{x}}_{\bf{n}}}{\bf{ + h}}\\{{\bf{y}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{y}}_{\bf{n}}}{\bf{ + h}}\;{\bf{f(x,y)}}\end{array}\]

02

Finding solutions for all values

For,

\[\begin{array}{c}{{\bf{x}}_{\bf{o}}}{\bf{ = 1,}}{{\bf{y}}_{\bf{o}}}{\bf{ = 2}}\\{{\bf{x}}_{\bf{1}}}{\bf{ = }}{{\bf{x}}_{\bf{o}}}{\bf{ + 0}}{\bf{.5 = 1 + 0}}{\bf{.5 = 1}}{\bf{.5}}\\{{\bf{x}}_{\bf{2}}}{\bf{ = }}{{\bf{x}}_{\bf{1}}}{\bf{ + 0}}{\bf{.5 = 1}}{\bf{.5 + 0}}{\bf{.5 = 2}}\\{{\bf{y}}_{\bf{1}}}{\bf{ = }}{{\bf{y}}_{\bf{o}}}{\bf{ + 0}}{\bf{.5(}}{{\bf{x}}_{\bf{o}}}{\bf{ - }}{{\bf{y}}^{\bf{2}}}_{\bf{o}}{\bf{) = 2 + 0}}{\bf{.5(1 - }}{{\bf{2}}^{\bf{2}}}{\bf{) = 0}}{\bf{.5}}\\{{\bf{y}}_{\bf{2}}}{\bf{ = 0}}{\bf{.5 + 0}}{\bf{.5(1}}{\bf{.5 - 0}}{\bf{.}}{{\bf{5}}^{\bf{2}}}{\bf{) = 1}}{\bf{.125}}\end{array}\]

Hence, the solution is for{h = 0.5 atx = 2 is 1.125.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free