Chapter 7: 26E (page 375)
In Problems\(21 - 30\), determine \({\mathcal{L}^{ - 1}}\{ F\} \).
\(F(s) = \frac{{7{s^3} - 2{s^2} - 3s + 6}}{{{s^3}(s - 2)}}\)
Short Answer
\({\mathcal{L}^{ - 1}}\left\{ F \right\} = 1 - \frac{3}{2}{t^2} + 6{e^{2t}}\)
Chapter 7: 26E (page 375)
In Problems\(21 - 30\), determine \({\mathcal{L}^{ - 1}}\{ F\} \).
\(F(s) = \frac{{7{s^3} - 2{s^2} - 3s + 6}}{{{s^3}(s - 2)}}\)
\({\mathcal{L}^{ - 1}}\left\{ F \right\} = 1 - \frac{3}{2}{t^2} + 6{e^{2t}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Problems 1-20, determine the Laplace transform of the given function using Table 7.1 on page 356 and the properties of the transform given in Table 7.2. [Hint: In Problems 12-20, use an appropriate trigonometric identity.]
In Problems 1-20, determine the Laplace transform of the given function using Table 7.1 on page 356 and the properties of the transform given in Table 7.2. [Hint: In Problems 12-20, use an appropriate trigonometric identity.]
.
In Problems 3-10, determine the Laplace transform of the given function.
Determine the inverse Laplace transform of the given function.
.
Recompute the coupled mass–spring oscillator motion in Problem 1, Exercises 5.6 (page 287), using Laplace transforms.
What do you think about this solution?
We value your feedback to improve our textbook solutions.