Use the Laplace transformation table and the linearity of the Laplace transform to determine the following transforms.

\(L\left\{ {{{\bf{t}}^{\bf{3}}}{\bf{ - t}}{{\bf{e}}^{\bf{t}}}{\bf{ + }}{{\bf{e}}^{{\bf{4t}}}}{\bf{cost}}} \right\}\)

Short Answer

Expert verified

The Laplace transform of the given function is \(\frac{6}{{{s^4}}} - \frac{1}{{{{\left( {s - 1} \right)}^2}}} + \frac{{s - 4}}{{{{\left( {s - 4} \right)}^2} + 1}},\;\;\;\;\;s > 4\).

Step by step solution

01

Given data

The given Laplace transform is \(L\left\{ {{{\bf{t}}^{\bf{3}}}{\bf{ - t}}{{\bf{e}}^{\bf{t}}}{\bf{ + }}{{\bf{e}}^{{\bf{4t}}}}{\bf{cost}}} \right\}\).

The objective is to find the Laplace transformation.

02

Formulas of Laplace transform

Some important formulas of Laplace transform:

\(\begin{array}{l}L\left\{ {{t^n}} \right\} = \frac{{n!}}{{{s^{n + 1}}}},\;\;\;\;\;n = 1,2, \ldots \\L\left\{ {{t^n}{e^{at}}} \right\} = \frac{{n!}}{{{{\left( {s - a} \right)}^{n + 1}}}},\;\;\;\;\;s > a\\L\left\{ {{e^{at}}\cos bt} \right\} = \frac{{s - a}}{{{{\left( {s - a} \right)}^2} + {b^2}}},\;\;\;\;\;s > a\end{array}\)

03

Find the Laplace transform of the given function.

Recall the linearity of Laplace transform:

\(L\left( {{f_1} + {f_2}} \right) = L\left( {{f_1}} \right) + L\left( {{f_2}} \right)\)and \(L\left( {{\rm{c}}f} \right) = {\rm{c}}L\left( f \right)\)

Now, simplify the given function as follows:

\(\begin{array}{c}L\left\{ {{t^3} - t{e^t} + {e^{4t}}\cos t} \right\} = L\left\{ {{t^3}} \right\} - L\left\{ {t{e^t}} \right\} + L\left\{ {{e^{4t}}\cos t} \right\}\\ = \frac{{3!}}{{{s^{3 + 1}}}} - \frac{{1!}}{{{{\left( {s - 1} \right)}^{1 + 1}}}} + \frac{{s - 4}}{{{{\left( {s - 4} \right)}^2} + {1^2}}},\;\;\;\;\;s > 4\\ = \frac{6}{{{s^4}}} - \frac{1}{{{{\left( {s - 1} \right)}^2}}} + \frac{{s - 4}}{{{{\left( {s - 4} \right)}^2} + 1}},\;\;\;\;\;s > 4\end{array}\)

Hence, the Laplace transform is \(\frac{6}{{{s^4}}} - \frac{1}{{{{\left( {s - 1} \right)}^2}}} + \frac{{s - 4}}{{{{\left( {s - 4} \right)}^2} + 1}},\;\;\;\;\;s > 4\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free