Using the representation for e(α+iβ)t in6, verify the differentiation formula7.

Short Answer

Expert verified

You get an equation (7)ddte(α+iβ)t=(α+iβ)e(α+iβ)twhen using e(α+iβ)t an equation (6) e(α+iβ)t=eαtcosβt+isinβt.

Step by step solution

01

Differentiation

When Euler's formula eiθ=cosθ+isinθ(with θ=βt) is used in equation e(α+iβ)t=eαt+iβt=eαteiβt, we find e(α+iβ)t=eαtcosβt+isinβt, which expresses the complex function e(α+iβ)tin terms of familiar real functions. Having made sense out of e(α+iβ)t, we can now show that (7)ddte(α+iβ)t=(α+iβ)e(α+iβ)t,

e(α+iβ)t=eαt(cosβt+isinβt)given from (6) in the chapter.

ddteαt(cosβt+isinβt)...a

Differentiate by parts,

ddteαtcosβt=eαt(-βsinβt)+αeαt(cosβt)ddteαtisinβt=ieαt(βcosβt)+αeαt(sinβt)

02

Simplification

Now substitute the both into the equation (a),

ddteαtcosβt+ddteαtisinβt=eαt(-βsinβt)+αeαt(cosβt)+ieαt(βcosβt)+αeαt(sinβt).

Expand-βeαt(sinβt)+αeαt(cosβt)+iβeαt(cosβt)+iαeαt(sinβt)

Collect like terms of cosβtand sinβt

(α+iβ)eαt(cosβt)+(iα-β)eαt(sinβt)

Factor out eαt

ddteαtcosβt+ddteαtisinβt=eαt((α+iβ)(cosβt)+(iα-β)(sinβt))

03

Multiplication

Multiply 1=-(i×i) to (iα-β)

i-(i(iα-β))=-ii2α-iβ=-i(-α-iβ)=i(α-iβ)eαt((α+iβ)(cosβt)+i(α+iβ)(sinβt))

Factor out (α+iβ)

(α+iβ)×eαt((cosβt)+i(sinβt))

Now it's in the format of e(α+iβ)t=eαt(cosβt+isinβt), so use it to get the correct solution ddteαt(cosβt+isinβt)=(α+iβ)×e(α+iβ)t.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free