Find general solutions to the nonhomogeneous Cauchy-Euler equations using a variety of parameters.

t2z''+tz'+9z=-tan(3lnt)

Short Answer

Expert verified

The general solution of the given equationt2z''+tz'+9z=-tan(3lnt) is:

y(t)=yh(t)+yp(t)=c1cos(3lnt)+c2sin(3lnt)+ln(tan(3lnt)+sec(3lnt))9cos(3lnt).

Step by step solution

01

Solve the homogeneous equation

First, one needs to solve the homogeneous equationt2z''+tz'+9z=0(1)

The solution of the equationat2z''+btz'+cz=0 is where t is the root of the equation .

From 1:a=b=1,c=9, so we need to solve the quadratic equationr2+9=0 which has solutions r1,2=±3i. Sincet3i=e3ilnt=cos(3lnt)+isin(3lnt)

solutions of (1) arey1(t)=cos(3lnt),y2(t)=sin(3lnt)

To find a particular solution to the given equation we need to divide both sides byt2

z''+1tz'+9t2z=-tan(3lnt)t2

02

Solving v1

By Variation of Parameters method, the particular solution has the form:

yp=v1ty1+v2ty2

Where,

v1(t)=-g(t)y2(t)y1(t)y2'(t)-y1'(t)y2(t)dt=tan(3lnt)t2sin(3lnt)cos(3lnt)×cos(3lnt)×31t+sin(3lnt)×sin(3lnt)×31tdt=sin2(3lnt)3tcos2(3lnt)+sin2(3lnt)dt=19sin2xcosxdx=191-cos2xcos2xdx=19dxcosx-cosxdx=ln(tanx+secx)-sinx9+C1=ln(tan(3lnt)+sec(3lnt))-sin(3lnt)9+C1

Herex=3lntdx=3tdt

03

Solving v2

Solve the other part,

v2(t)=g(t)y1(t)y1(t)y2'(t)-y1'(t)y2(t)dt=-tan(3lnt)t2cos(3lnt)cos(3lnt)×cos(3lnt)×31t+sin(3lnt)×sin(3lnt)×31tdt=sin(3lnt)t2cos(3lnt)cos(3lnt)3tcos2(3lnt)+sin2(3lnt)dt=-19sinxdx=19cosx+C2=cos(3lnt)9+C2

Herex=3lntdx=3tdt

04

Substitute the values

Hence,

yp(t)=ln(tan(3lnt)+sec(3lnt))-sin(3lnt)9cos(3lnt)+cos(3lnt)9sin(3lnt)=ln(tan(3lnt)+sec(3lnt))9cos(3lnt)

The general solution is:

y(t)=yh(t)+yp(t)=c1cos(3lnt)+c2sin(3lnt)+ln(tan(3lnt)+sec(3lnt))9cos(3lnt).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free