Chapter 4: Q37RP (page 231)
Use the mass–spring oscillator analogy to decide whether all solutions to each of the following differential equations are bounded as \({\bf{t}} \to {\bf{ + }}\infty \)
\(\begin{array}{l}\left( {\bf{a}} \right)\,\,{\bf{y'' + }}{{\bf{t}}^{\bf{4}}}{\bf{y = 0}}\\\left( {\bf{b}} \right)\,\,{\bf{y'' - }}{{\bf{t}}^{\bf{4}}}{\bf{y = 0}}\\\left( {\bf{c}} \right)\,\,{\bf{y'' + }}{{\bf{y}}^{\bf{7}}}{\bf{ = 0}}\\\left( {\bf{d}} \right)\,\,{\bf{y'' + }}{{\bf{y}}^{\bf{8}}}{\bf{ = 0}}\\\left( {\bf{e}} \right)\,\,{\bf{y'' + }}\left( {{\bf{3 + sint}}} \right){\bf{y = 0}}\\\left( {\bf{f}} \right)\,\,{\bf{y'' + }}{{\bf{t}}^{\bf{2}}}{\bf{y' + y = 0}}\\\left( {\bf{g}} \right)\,\,{\bf{y'' - }}{{\bf{t}}^{\bf{2}}}{\bf{y' - y = 0}}\end{array}\)
Short Answer
a) Bounded
b) Unbounded
c) Bounded
d) Unbounded
e) Bounded
f) Bounded
g) Unbounded