The Taylor method of order 2 can be used to approximate the solution to the initial value problem\({\bf{y' = y,y(0) = 1}}\) , at x= 1. Show that the approximation \({{\bf{y}}_{\bf{n}}}\)obtained by using the Taylor method of order 2 with the step size \(\frac{{\bf{1}}}{{\bf{n}}}\) is given by the formula\({{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{n}}}\). The solution to the initial value problem is\({\bf{y = }}{{\bf{e}}^{\bf{x}}}\), so \({{\bf{y}}_{\bf{n}}}\)is an approximation to the constant e.

Short Answer

Expert verified

proved

Step by step solution

01

Find the value of \({{\bf{f}}_{\bf{2}}}{\bf{(x,y)}}\)

Here \({\bf{f(x,y) = y}}\),\({{\bf{x}}_{\bf{o}}}{\bf{ = 0,}}{{\bf{y}}_{\bf{o}}}{\bf{ = 1}}\)

Apply the chain rule.

\({{\bf{f}}_{\bf{2}}}{\bf{(x,y)}} = \frac{{\partial {\bf{f}}}}{{\partial {\bf{x}}}}{\bf{(x,y)}} + \frac{{\partial {\bf{f}}}}{{\partial {\bf{y}}}}{\bf{(x,y)f(x,y)}}\)

Now

\(\begin{array}{l}\frac{{\partial {\bf{f}}}}{{\partial {\bf{x}}}}{\bf{(x,y) = }}0\\\frac{{\partial {\bf{f}}}}{{\partial {\bf{y}}}}{\bf{(x,y) = }}1\end{array}\)

So, the equation is \({{\bf{f}}_{\bf{2}}}{\bf{(x,y) = y}}\)

02

Apply the recursive formulas for order 2

The recursive formula is

\(\begin{array}{l}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{x}}_{\bf{n}}}{\bf{ + h}}\\{{\bf{y}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{y}}_{\bf{n}}}{\bf{ + hf(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{) + }}\frac{{{{\bf{h}}^{^{\bf{2}}}}}}{{{\bf{2!}}}}{{\bf{f}}_{\bf{2}}}{\bf{(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{) + }}.....\frac{{{{\bf{h}}^{\bf{p}}}}}{{{\bf{p!}}}}{{\bf{f}}_{\bf{p}}}{\bf{(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{)}}\end{array}\)

\(\begin{array}{l}{{\bf{x}}_{\bf{1}}}{\bf{ = }}\frac{{\bf{1}}}{{\bf{n}}}\\{{\bf{y}}_{\bf{1}}}{\bf{ = }}\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)\end{array}\)

Apply the same procedure for other values up to n.

\(\begin{array}{c}{{\bf{y}}_{\bf{2}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{2}}}\\{{\bf{y}}_{\bf{3}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{3}}}\\{\bf{.}}\\{\bf{.}}\\{{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{n}}}\\{{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{n}}}{\bf{n}} \in {\bf{N}}\end{array}\)

Hence it is proved that \({{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}}

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The power generated or dissipated by a circuit element equals the voltage across the element times the current through the element. Show that the power dissipated by a resistor equall2R, the power associated with an inductorequals the derivative of12LI2 and the power associated with a capacitor equals the derivative of 12CEc2.

Use the fourth-order Runge–Kutta subroutine with h= 0.25 to approximate the solution to the initial value problem y'=2y-6,y(0)=1, at x= 1. (Thus, input N= 4.) Compare this approximation to the actual solution y=3-2e2xevaluated at x= 1.

Building Temperature.In Section 3.3 we modeled the temperature inside a building by the initial value problem (13)\(\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = K}}\,\,\left[ {{\bf{M}}\,{\bf{(t) - T}}\,{\bf{(t)}}} \right]{\bf{ + H}}\,{\bf{(t) + U}}\,{\bf{(t),}}\,\,{\bf{T}}\,{\bf{(}}{{\bf{t}}_{\bf{o}}}{\bf{) = }}{{\bf{T}}_{\bf{o}}}\) , where M is the temperature outside the building, T is the temperature inside the building, H is the additional heating rate, U is the furnace heating or air conditioner cooling rate, K is a positive constant, and \({{\bf{T}}_{\bf{o}}}\) is the initial temperature at time \({{\bf{t}}_{\bf{o}}}\) . In a typical model, \({{\bf{t}}_{\bf{o}}}{\bf{ = 0}}\) (midnight),\({{\bf{T}}_{\bf{o}}}{\bf{ = 6}}{{\bf{5}}^{\bf{o}}}\), \({\bf{H}}\left( {\bf{t}} \right){\bf{ = 0}}{\bf{.1}}\), \({\bf{U(t) = 1}}{\bf{.5}}\left[ {{\bf{70 - T(t)}}} \right]\)and \({\bf{M(t) = 75 - 20cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}\) . The constant K is usually between\(\frac{{\bf{1}}}{{\bf{4}}}{\bf{and}}\frac{{\bf{1}}}{{\bf{2}}}\), depending on such things as insulation. To study the effect of insulating this building, consider the typical building described above and use the improved Euler’s method subroutine with\({\bf{h = }}\frac{{\bf{2}}}{{\bf{3}}}\) to approximate the solution to (13) on the interval \(0 \le {\bf{t}} \le 24\) (1 day) for \({\bf{k = 0}}{\bf{.2,}}\,{\bf{0}}{\bf{.4}}\), and 0.6.

The solution to the initial value problemdydx+yx=x3y2,y(1)=3has a vertical asymptote (“blows up”) at some point in the interval [1,2]By experimenting with the improved Euler’s method subroutine, determine this point to two decimal places.

In Problem 16, let I = 50 kg-m2 and the retarding torque be N-mIf the motor is turned off with the angular velocity at 225 rad/sec, determine how long it will take for the flywheel to come to rest.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free