If the Taylor method of order p is used in Problem 17, show that \({{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{6}}{{\bf{n}}^{\bf{3}}}}}{\bf{ + }}.....{\bf{ + }}\frac{{\bf{1}}}{{{\bf{p!}}{{\bf{n}}^{\bf{p}}}}}} \right)^{\bf{n}}}\), n = 1, 2, …

Short Answer

Expert verified

proved

Step by step solution

01

Find the value of \({{\bf{f}}_{\bf{2}}}{\bf{(x,y)}}\)

Here \({\bf{f(x,y) = y}}\),\({{\bf{x}}_{\bf{o}}}{\bf{ = 0,}}{{\bf{y}}_{\bf{o}}}{\bf{ = 1}}\),\({\rm{h = }}\frac{{\rm{1}}}{{\rm{n}}}\)

Apply the chain rule.

\({{\bf{f}}_{\bf{2}}}{\bf{(x,y)}} = \frac{{\partial {\bf{f}}}}{{\partial {\bf{x}}}}{\bf{(x,y)}} + \frac{{\partial {\bf{f}}}}{{\partial {\bf{y}}}}{\bf{(x,y)f(x,y)}}\)

Now

\(\begin{array}{l}\frac{{\partial {\bf{f}}}}{{\partial {\bf{x}}}}{\bf{(x,y) = }}0\\\frac{{\partial {\bf{f}}}}{{\partial {\bf{y}}}}{\bf{(x,y) = }}1\end{array}\)

So, the equation is \({{\bf{f}}_{\bf{2}}}{\bf{(x,y) = y}}\)

02

Find the other values of \({{\bf{f}}_{\bf{n}}}{\bf{(x,y)}}{\bf{.}}\)

\(\begin{array}{c}{{\bf{f}}_{\bf{3}}}{\bf{(x,y) = y}}\\{{\bf{f}}_{\bf{4}}}{\bf{(x,y) = y}}\\{\bf{.}}\\{\bf{.}}\\{{\bf{f}}_{\bf{p}}}{\bf{(x,y) = y}}\end{array}\)

03

Apply the recursive formulas for order n

The recursive formula is

\(\begin{array}{l}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{x}}_{\bf{n}}}{\bf{ + h}}\\{{\bf{y}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{y}}_{\bf{n}}}{\bf{ + hf(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{) + }}\frac{{{{\bf{h}}^{^{\bf{2}}}}}}{{{\bf{2!}}}}{{\bf{f}}_{\bf{2}}}{\bf{(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{) + }}.....\frac{{{{\bf{h}}^{\bf{p}}}}}{{{\bf{p!}}}}{{\bf{f}}_{\bf{p}}}{\bf{(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{)}}\end{array}\)\(\begin{array}{c}{{\bf{y}}_{\bf{1}}}{\bf{ = }}\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{6}}{{\bf{n}}^{\bf{3}}}}}{\bf{ + }}.....{\bf{ + }}\frac{{\bf{1}}}{{{\bf{p!}}{{\bf{n}}^{\bf{p}}}}}} \right)\\{{\bf{y}}_{\bf{2}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{6}}{{\bf{n}}^{\bf{3}}}}}{\bf{ + }}.....{\bf{ + }}\frac{{\bf{1}}}{{{\bf{p!}}{{\bf{n}}^{\bf{p}}}}}} \right)^{\bf{2}}}\\{\bf{.}}\\{\bf{.}}\\{{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{6}}{{\bf{n}}^{\bf{3}}}}}{\bf{ + }}.....{\bf{ + }}\frac{{\bf{1}}}{{{\bf{p!}}{{\bf{n}}^{\bf{p}}}}}} \right)^{\bf{n}}}\\{{\bf{y}}_{{\bf{n + 1}}}}{\bf{ = }}\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{6}}{{\bf{n}}^{\bf{3}}}}}{\bf{ + }}.....{\bf{ + }}\frac{{\bf{1}}}{{{\bf{p!}}{{\bf{n}}^{\bf{p}}}}}} \right){{\bf{y}}_{\bf{n}}}\;{\bf{n}} \in {\bf{N}}\end{array}\)

Hence it is proved that\({{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{6}}{{\bf{n}}^{\bf{3}}}}}{\bf{ + }}.....{\bf{ + }}\frac{{\bf{1}}}{{{\bf{p!}}{{\bf{n}}^{\bf{p}}}}}} \right)^{\bf{n}}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An object of mass 2 kg is released from rest from a platform 30 m above the water and allowed to fall under the influence of gravity. After the object strikes the water, it begins to sink with gravity pulling down and a buoyancy force pushing up. Assume that the force of gravity is constant, no change in momentum occurs on impact with the water, the buoyancy force is 1/2 the weight (weight = mg), and the force due to air resistance or water resistance is proportional to the velocity, with proportionality constant b1= 10 N-sec/m in the air and b2= 100 N-sec/m in the water. Find the equation of motion of the object. What is the velocity of the object 1 min after it is released?

When an object slides on a surface, it encounters a resistance force called friction. This force has a magnitude of μN , whereμ the coefficient of kinetic friction and N isthe magnitude of the normal force that the surface applies to the object. Suppose an object of mass30 kgis released from the top of an inclined plane that is inclined 30°to the horizontal (see Figure 3.11). Assume the gravitational force is constant, air resistance is negligible, and the coefficient of kinetic frictionμ=0.2 . Determine the equation of motion for the object as it slides down the plane. If the top surface of the plane is 5 m long, what is the velocity of the object when it reaches the bottom?

A cold beer initially at 35°F warms up to 40°F in 3 min while sitting in a room of temperature 70°F. How warm will the beer be if left out for 20 min?

Beginning at time t=0, fresh water is pumped at the rate of 3 gal/min into a 60-gal tank initially filled with brine. The resulting less-and-less salty mixture overflows at the same rate into a second 60-gal tank that initially contained only pure water, and from there it eventually spills onto the ground. Assuming perfect mixing in both tanks, when will the water in the second tank taste saltiest? And exactly how salty will it then be, compared with the original brine?

Transmission Lines.In the study of the electric field that is induced by two nearby transmission lines, an equation of the formdzdx+g(x)z2=f(x)arises. Letf(x)=5x+2andg(x)=x2. If z(0)=1, use the fourth-order Runge–Kutta algorithm to approximate z(1). For a tolerance ofε=0.0001, use a stopping procedure based on the absolute error.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free