Fluid Flow. In the study of the no isothermal flow of a Newtonian fluid between parallel plates, the equation\(\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{x}}^{\bf{2}}}}}{\bf{ + }}{{\bf{x}}^{\bf{2}}}{{\bf{e}}^{\bf{y}}}{\bf{ = 0,x > 0}}\) , was encountered. By a series of substitutions, this equation can be transformed into the first-order equation\(\frac{{{\bf{dv}}}}{{{\bf{du}}}}{\bf{ = u}}\left( {\frac{{\bf{u}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\bf{v}}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\bf{v}}^{\bf{2}}}\). Use the fourth-order Runge–Kutta algorithm to approximate \({\bf{v(3)}}\) if \({\bf{v(u)}}\) satisfies\({\bf{v(}}2{\bf{)}} = 0.1\). For a tolerance of, \({\bf{\varepsilon = 0}}{\bf{.0001}}\) use a stopping procedure based on the relative error.

Short Answer

Expert verified

\({\rm{v}}\left( 3 \right) = 0.241929\)with h = 0.0625

Step by step solution

01

Find the values of \({{\bf{k}}_{\bf{i}}}{\bf{.i = 1,2,3,4}}\)

Using the improved 4th order Runge-Kutta subroutine with tolerance \(\xi {\bf{ = 0}}{\bf{.0001}}\).

Since \({\bf{f(x,y) = u}}\left( {\frac{{\bf{u}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\bf{v}}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\bf{v}}^{\bf{2}}}\) and \({\bf{u = }}{{\bf{u}}_{\bf{0}}}{\bf{ = 0,v = }}{{\bf{v}}_{\bf{o}}}{\bf{ = 0}}{\bf{.1}}\) and h = 1

\(\begin{array}{l}{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(u,v) = h}}\left[ {{\bf{u}}\left( {\frac{{\bf{u}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\bf{v}}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\bf{v}}^{\bf{2}}}} \right]\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = h}}\left[ {\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}} \right)\left( {\frac{{{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\left( {{\bf{v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right)}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{ + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\left( {{\bf{v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right)}^{\bf{2}}}} \right]\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = h}}\left[ {\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}} \right)\left( {\frac{{{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\left( {{\bf{v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right)}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{ + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\left( {{\bf{v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right)}^{\bf{2}}}} \right]\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{u + h,v + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = h}}\left[ {\left( {{\bf{u + h}}} \right)\left( {\frac{{{\bf{u + h}}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\left( {{\bf{v + }}{{\bf{k}}_{\bf{3}}}} \right)}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + h + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\left( {{\bf{v + }}{{\bf{k}}_{{{\bf{3}}_{}}}}} \right)}^{\bf{2}}}} \right]\\{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(u,v) = 0}}{\bf{.049}}\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.088356}}\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.120795}}\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{u + h,v + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = 0}}{\bf{.348857}}\end{array}\)

02

Find the values of u and v

\(\begin{array}{c}{\bf{u = }}{{\bf{u}}_{\bf{o}}}{\bf{ + h = 3}}\\{\bf{v = }}{{\bf{v}}_{\bf{o}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{6}}}\left( {{{\bf{k}}_{\bf{1}}}{\bf{ + 2}}{{\bf{k}}_{\bf{2}}}{\bf{ + 2}}{{\bf{k}}_{\bf{3}}}{\bf{ + }}{{\bf{k}}_{\bf{4}}}} \right)\\{\bf{ = 0}}{\bf{.236}}\end{array}\)

Therefore \({\rm{v}}\left( 3 \right) = 0.236\).

This is the solution of IVP.

Now, the relative error is \(\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.236027 - 0}}{\bf{.1}}}}{{{\bf{0}}{\bf{.236027}}}}} \right|{\bf{ = 0}}{\bf{.57632 > 0}}{\bf{.0001}}\)

03

Find the other values

Apply the same procedure for h = 0.5, \({\bf{u = }}2{\bf{,v = }}0.1\).

\(\begin{array}{c}{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(u,v) = 0}}{\bf{.245}}\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.033306}}\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.036114}}\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{u + h,v + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = 0}}{\bf{.053410}}\\{\bf{u = 2 + 0}}{\bf{.5 = 2}}{\bf{.5}}\\{\bf{v = 0}}{\bf{.1 + }}\frac{{\bf{1}}}{{\bf{6}}}\left( {{{\bf{k}}_{\bf{1}}}{\bf{ + 2}}{{\bf{k}}_{\bf{2}}}{\bf{ + 2}}{{\bf{k}}_{\bf{3}}}{\bf{ + }}{{\bf{k}}_{\bf{4}}}} \right)\\{\bf{ = 0}}{\bf{.136125}}\end{array}\)

And

\(\begin{array}{c}{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(u,v) = 0}}{\bf{.053419}}\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.083702}}\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.101558}}\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{u + h,v + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = 0}}{\bf{.205709}}\\{\bf{u = 2}}{\bf{.5 + 0}}{\bf{.5 = 3}}\\{\bf{v = 0}}{\bf{.1 + }}\frac{{\bf{1}}}{{\bf{6}}}\left( {{{\bf{k}}_{\bf{1}}}{\bf{ + 2}}{{\bf{k}}_{\bf{2}}}{\bf{ + 2}}{{\bf{k}}_{\bf{3}}}{\bf{ + }}{{\bf{k}}_{\bf{4}}}} \right)\\{\bf{ = 0}}{\bf{.241066}}\end{array}\)

Thus, \({\rm{v}}\left( 3 \right) = 0.241066\)

The relative error is \(\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.2}}41066{\bf{ - 0}}.236027}}{{{\bf{0}}{\bf{.2}}41066}}} \right|{\bf{ = 0}}.020903{\bf{ > 0}}{\bf{.0001}}\)

04

Evaluate the other value for h = 0.25, 0.125, 0.0625

Apply the same procedure for other values. The values are

\(\begin{array}{c}{\rm{v}}{\bf{(3) = v(3;0}}{\bf{.25) = 0}}{\bf{.241854}}\\\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.241854 - 0}}{\bf{.241066}}}}{{{\bf{0}}{\bf{.241854}}}}} \right|{\bf{ = 0}}{\bf{.003258 > 0}}{\bf{.0001}}\\{\rm{v}}{\bf{(3) = v(3;0}}{\bf{.125) = 0}}{\bf{.241924}}\\\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.241924 - 0}}{\bf{.241854}}}}{{{\bf{0}}{\bf{.241924}}}}} \right|{\bf{ = 0}}{\bf{.00029 > 0}}{\bf{.0001}}\\{\rm{v}}{\bf{(3) = v(3;0}}{\bf{.0625) = 0}}{\bf{.241929}}\\\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.241929 - 0}}{\bf{.241924}}}}{{{\bf{0}}{\bf{.241929}}}}} \right|{\bf{ = 0}}{\bf{.00002 > 0}}{\bf{.0001}}\end{array}\)

Hence,\({\rm{v}}\left( 3 \right) = 0.241929\)

Hence the solution is \({\rm{v}}\left( 3 \right) = 0.241929\)with h = 0.0625

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A snowball melts in such a way that the rate of change in its volume is proportional to its surface area. If the snowball was initially 4 in. in diameter and after 30 min its diameter is 3 in., when will its diameter be 2 in.? Mathematically speaking, when will the snowball disappear?

Rocket Flight. A model rocket having initial mass mo kg is launched vertically from the ground. The rocket expels gas at a constant rate of a kg/sec and at a constant velocity of b m/sec relative to the rocket. Assume that the magnitude of the gravitational force is proportional to the mass with proportionality constant g. Because the mass is not constant, Newton’s second law leads to the equation (mo - αt) dv/dt - αβ = -g(m0 – αt), where v = dx/dt is the velocity of the rocket, x is its height above the ground, and m0 - αt is the mass of the rocket at t sec after launch. If the initial velocity is zero, solve the above equation to determine the velocity of the rocket and its height above ground for 0≤t<m0/α.

Use the improved Euler’s method subroutine with step size h = 0.2 to approximate the solution toat the points x = 0, 0.2, 0.4, …., 2.0. Use your answers to make a rough sketch of the solution on [0, 2].

In 1990 the Department of Natural Resources released 1000 splake (a crossbreed of fish) into a lake. In 1997 the population of splake in the lake was estimated to be 3000. Using the Malthusian law for population growth, estimate the population of splake in the lake in the year 2020.

An object of mass 8 kg is given an upward initial velocity of 20 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is -16v , where v is the velocity of the object in m/sec. Determine the equation of motion of the object. If the object is initially 100 m above the ground, determine when the object will strike the ground.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free