In Example 1, page 126, the improved Euler’s method approximation to \({\bf{e}}\) with step size \({\bf{h}}\)was shown to be \({\bf{\;}}{\left( {{\bf{1 + h + }}\frac{{{{\bf{h}}^{\bf{2}}}}}{{\bf{2}}}} \right)^{\frac{{\bf{1}}}{{\bf{h}}}}}\).First prove that the error \({\bf{e - \;}}{\left( {{\bf{1 + h + }}\frac{{{{\bf{h}}^{\bf{2}}}}}{{\bf{2}}}} \right)^{\frac{{\bf{1}}}{{\bf{h}}}}}\)approaches zero as \({\bf{h}} \to 0\). Then use L’Hopital’s rule to show the \(\mathop {{\bf{lim}}}\limits_{{\bf{h}} \to 0} \frac{{{\bf{error}}}}{{{{\bf{h}}^{\bf{2}}}}}{\bf{ = }}\frac{{\bf{e}}}{6} \approx 0.45305\).Compare this constant with the entries in the last column of Table 3.5.

Short Answer

Expert verified

By the use L’Hopital’s rule to show the \(\mathop {\lim }\limits_{h \to 0} \frac{{error}}{{{h^2}}} = \frac{e}{6} \approx 0.45305\). The closest value with the last value from table 3.5 for \(h = {10^{ - 3}}\,\,is\,\,0.45271\).

Step by step solution

01

Important hint.

For getting the solution apply L’hopital rule.

02

Prove that the error \({\bf{e - \;}}{\left( {{\bf{1 + h + }}\frac{{{{\bf{h}}^{\bf{2}}}}}{{\bf{2}}}} \right)^{\frac{{\bf{1}}}{{\bf{h}}}}}\) approaches zero as \({\bf{h}} \to 0\).As  \(\mathop {\lim }\limits_{h \to 0} {\left( {1 + h} \right)^{\frac{1}{h}}} = e\)By using this formula

\(\begin{array}{c}\mathop {\lim }\limits_{h \to 0} \left( {e - {{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{h}}}} \right)\\ = \mathop {\lim }\limits_{h \to 0} e - \mathop {\lim }\limits_{h \to 0} {\left( {1 + h + \frac{{{h^2}}}{2}} \right)^{\frac{1}{h}}}\\ = e - \mathop {\lim }\limits_{h \to 0} {\left( {{{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{{h + \frac{{{h^2}}}{2}}}}}} \right)^{\frac{{h + \frac{{{h^2}}}{2}}}{h}}}\\ = e - \mathop {\lim }\limits_{h \to 0} {e^{\frac{{h + \frac{{{h^2}}}{2}}}{h}}}\end{array}\)

\(\begin{array}{c} = e - {e^1}\\ = 0\end{array}\)

03

Find the result by applying L’Hopital’s rule.

\(\begin{array}{c} = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {e - \;{{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{h}}}} \right)}^'}}}{{{{({h^2})}^'}}}\\ = \mathop {\lim }\limits_{h \to 0} {\frac{{\left( { - \;{{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{h}}}} \right)}}{{2h}}^'}\end{array}\)

04

Evaluate the result by the derivative of part in step 2.

\(\begin{array}{c}{\left( { - \;{{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{h}}}} \right)^'} = - {\left( {{e^{\left( {\frac{1}{h}in{{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{h}}}} \right)}}} \right)^'}\\ = - {e^{\left( {\frac{1}{h}in{{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{h}}}} \right)}}\left( {\frac{{ - \ln \left( {1 + h + \frac{{{h^2}}}{2}} \right)}}{{{h^2}}} + \frac{{2(h + 1)}}{{h(2 + 2h + {h^2}}}} \right)\\ = \left( {\frac{{ - \ln \left( {1 + h + \frac{{{h^2}}}{2}} \right)}}{{{h^2}}} + \frac{{2(h + 1)}}{{h(2 + 2h + {h^2}}}} \right){\left( {1 + h + \frac{{{h^2}}}{2}} \right)^{\frac{1}{h}}}\end{array}\)

05

Now Apply derivative part in step 2.

\( = \mathop {\lim }\limits_{h \to 0} {\frac{{\left( { - \;{{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{h}}}} \right)}}{{2h}}^'}\)

\(\begin{array}{c} = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {\frac{{ - \ln \left( {1 + h + \frac{{{h^2}}}{2}} \right)}}{{{h^2}}} + \frac{{2(h + 1)}}{{h(2 + 2h + {h^2})}}} \right){{\left( {1 + h + \frac{{{h^2}}}{2}} \right)}^{\frac{1}{h}}}}}{{2h}}\\\frac{e}{2}.\mathop {\lim }\limits_{h \to 0} - \frac{{\left( {\frac{{ - \ln \left( {1 + h + \frac{{{h^2}}}{2}} \right)}}{{{h^2}}} + \frac{{2(h + 1)}}{{h(2 + 2h + {h^2})}}} \right)}}{h}\\\frac{e}{2}\mathop {\lim }\limits_{h \to 0} \left( { - \frac{{2h(h + 1) - \ln (\frac{{{h^2}}}{2} + h + 1)({h^2} + 2h + 2)}}{{{h^3}({h^2} + 2h + 2)}}} \right)\\ = \frac{e}{2}\mathop {\lim }\limits_{h \to 0} \frac{{ - h - {h^2} + \left( {1 + h + \frac{{{h^2}}}{2}} \right).\ln \left( {1 + h + \frac{{{h^2}}}{2}} \right)}}{{{h^3} + {h^4} + \frac{{{h^5}}}{2}}}\end{array}\)

By solving this and apply as \(h \to 0\).

\(\begin{array}{l} = \frac{e}{6}\\ \approx 0.45305\end{array}\)

06

Find the values of different values of \({\bf{h}}\).

For \(h = 1\) then \(\frac{{{\rm{error}}}}{{{h^2}}} = 0.21828\)

For \(h = {10^{ - 1}}\,\,{\rm{then}},\,\,\frac{{{\rm{error}}}}{{{h^2}}} = 0.42010\)

For \(h = {10^{ - 2}}\,{\rm{then}}\,\,\frac{{{\rm{error}}}}{{{h^2}}} = 0.44966\)

For \(h = {10^{ - 3}}\,{\rm{then}}\,\,\frac{{{\rm{error}}}}{{{h^2}}} = 0.45271\)

Therefore, the closest value with the last value from table 3.5 for \(h = {10^{ - 3}}\,{\rm{is}}\,\,0.45271\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A snowball melts in such a way that the rate of change in its volume is proportional to its surface area. If the snowball was initially 4 in. in diameter and after 30 min its diameter is 3 in., when will its diameter be 2 in.? Mathematically speaking, when will the snowball disappear?

The Taylor method of order 2 can be used to approximate the solution to the initial value problem\({\bf{y' = y,y(0) = 1}}\) , at x= 1. Show that the approximation \({{\bf{y}}_{\bf{n}}}\)obtained by using the Taylor method of order 2 with the step size \(\frac{{\bf{1}}}{{\bf{n}}}\) is given by the formula\({{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{n}}}\). The solution to the initial value problem is\({\bf{y = }}{{\bf{e}}^{\bf{x}}}\), so \({{\bf{y}}_{\bf{n}}}\)is an approximation to the constant e.

Sailboats A and B each have a mass of 60 kg and cross the starting line at the same time on the first leg of a race. Each has an initial velocity of 2 m/sec. The wind applies a constant force of 650 N to each boat, and the force due to water resistance is proportional to the velocity of the boat. For sailboat A the proportionality constants arebefore planing when the velocity is less than 5 m/sec andwhen the velocity is above 5 m/sec. For sailboat B the proportionality constants arebefore planing when the velocity is less than 6 m/sec andwhen the velocity is above. If the first leg of the race is 500 m long, which sailboat will be leading at the end of the first leg?

If the object in Problem 1 has a mass of500 kginstead of 5 kg , when will it strike the ground? [Hint: Here the exponential term is too large to ignore. Use Newton’s method to approximate the time t when the object strikes the ground (see Appendix B)

In 1990 the Department of Natural Resources released 1000 splake (a crossbreed of fish) into a lake. In 1997 the population of splake in the lake was estimated to be 3000. Using the Malthusian law for population growth, estimate the population of splake in the lake in the year 2020.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free