Question: 14. Let A, B, C, D, and I be \(n \times n\) matrices. Use the definition or properties of a determinant to justify the following formulas. Part (c) is useful in applications of eigenvalues (Chapter 5).

  1. \(det\left( {\begin{array}{*{20}{c}}A&{\bf{0}}\\{\bf{0}}&{\bf{I}}\end{array}} \right) = det\,A\)
  2. \(det\left( {\begin{array}{*{20}{c}}I&{\bf{0}}\\C&D\end{array}} \right) = det\,D\)
  3. \(det\left( {\begin{array}{*{20}{c}}A&{\bf{0}}\\C&D\end{array}} \right) = \left( {det\,A} \right)\left( {det\,D} \right) = det\left( {\begin{array}{*{20}{c}}{\bf{A}}&B\\{\bf{0}}&D\end{array}} \right)\)

Short Answer

Expert verified
  1. Hence, \(\det \left( {\begin{array}{*{20}{c}}A&0\\0&I\end{array}} \right) = \det A\) is proved.
  2. \(\det \left( {\begin{array}{*{20}{c}}I&0\\C&D\end{array}} \right) = \det D\)is proved.
  3. \(\det \left( {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right) = \left( {\det A} \right)\left( {\det D} \right) = \left[ {\begin{array}{*{20}{c}}A&B\\0&D\end{array}} \right)\) is proved.

Step by step solution

01

Use the definition of a determinant

(a)

\(\begin{array}{c}\det \left( {\begin{array}{*{20}{c}}A&0\\0&I\end{array}} \right) = \det \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}&0&0& \cdots &0\\{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}&0&0& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}&0&0& \cdots &0\\0&0& \cdots &0&1&0& \cdots &0\\0&0& \cdots &0&0&1& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\0&0& \cdots &0&0&0& \cdots &1\end{array}} \right)\\ = {\left( { - 1} \right)^{2n + 2n}}1\det \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}&0&0& \cdots &0\\{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}&0&0& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}&0&0& \cdots &0\\0&0& \cdots &0&1&0& \cdots &0\\0&0& \cdots &0&0&1& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\0&0& \cdots &0&0&0& \cdots &1\end{array}} \right)\\ = \det \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}&0&0& \cdots &0\\{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}&0&0& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}&0&0& \cdots &0\\0&0& \cdots &0&1&0& \cdots &0\\0&0& \cdots &0&0&1& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\0&0& \cdots &0&0&0& \cdots &1\end{array}} \right)\end{array}\)

Continue this process to obtain:

\(\begin{array}{c}\det \left( {\begin{array}{*{20}{c}}A&0\\0&I\end{array}} \right) = {\left( { - 1} \right)^{n + 1 + n + 1}}1\det \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \vdots & \vdots & \ddots & \vdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}\end{array}} \right)\\ = {\left( { - 1} \right)^{2\left( {n + 1} \right)}}\det \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \vdots & \vdots & \ddots & \vdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}\end{array}} \right)\\ = \det \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \vdots & \vdots & \ddots & \vdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}\end{array}} \right)\\\det \left( {\begin{array}{*{20}{c}}A&0\\0&I\end{array}} \right) = \det A\end{array}\)

02

Similarly prove part (b)

(b)

\(\begin{array}{c}\det \left( {\begin{array}{*{20}{c}}I&0\\C&D\end{array}} \right) = \det \left( {\begin{array}{*{20}{c}}1&0& \cdots &0&0&0& \cdots &0\\0&1& \cdots &0&0&0& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\0&0& \cdots &1&0&0& \cdots &0\\{{c_{11}}}&{{c_{12}}}& \cdots &{{c_{1n}}}&{{d_{11}}}&{{d_{12}}}& \cdots &{{d_{1n}}}\\{{c_{21}}}&{{c_{22}}}& \cdots &{{c_{2n}}}&{{d_{21}}}&{{d_{22}}}& \cdots &{{d_{2n}}}\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\{{c_{n1}}}&{{c_{n2}}}& \cdots &{{c_{nn}}}&{{d_{n1}}}&{{d_{n2}}}& \cdots &{{d_{nn}}}\end{array}} \right)\\ = {\left( { - 1} \right)^{1 + 1}}1\det \left( {\begin{array}{*{20}{c}}1&0& \cdots &0&0&0& \cdots &0\\0&1& \cdots &0&0&0& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\0&0& \cdots &1&0&0& \cdots &0\\{{c_{12}}}&{{c_{13}}}& \cdots &{{c_{1n}}}&{{d_{11}}}&{{d_{12}}}& \cdots &{{d_{13}}}\\{{c_{22}}}&{{c_{23}}}& \cdots &{{c_{2n}}}&{{d_{21}}}&{{d_{22}}}& \cdots &{{d_{2n}}}\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\{{c_{n2}}}&{{c_{n3}}}& \cdots &{{c_{nn}}}&{{d_{n1}}}&{{d_{n2}}}& \cdots &{{d_{nn}}}\end{array}} \right)\\ = \det \left( {\begin{array}{*{20}{c}}1&0& \cdots &0&0&0& \cdots &0\\0&1& \cdots &0&0&0& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\0&0& \cdots &1&0&0& \cdots &0\\{{c_{12}}}&{{c_{13}}}& \cdots &{{c_{1n}}}&{{d_{11}}}&{{d_{12}}}& \cdots &{{d_{13}}}\\{{c_{22}}}&{{c_{23}}}& \cdots &{{c_{2n}}}&{{d_{21}}}&{{d_{22}}}& \cdots &{{d_{2n}}}\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\{{c_{n2}}}&{{c_{n3}}}& \cdots &{{c_{nn}}}&{{d_{n1}}}&{{d_{n2}}}& \cdots &{{d_{nn}}}\end{array}} \right)\end{array}\)

Continue this process to obtain:

\(\begin{array}{c}\det \left( {\begin{array}{*{20}{c}}I&0\\C&D\end{array}} \right) = {\left( { - 1} \right)^{n + n}}1\det \left( {\begin{array}{*{20}{c}}{{d_{11}}}&{{d_{12}}}& \cdots &{{d_{1n}}}\\{{d_{21}}}&{{d_{22}}}& \cdots &{{d_{2n}}}\\ \vdots & \vdots & \ddots & \vdots \\{{d_{n1}}}&{{d_{n2}}}& \cdots &{{d_{nn}}}\end{array}} \right)\\ = {\left( { - 1} \right)^{2n}}\det \left( {\begin{array}{*{20}{c}}{{d_{11}}}&{{d_{12}}}& \cdots &{{d_{1n}}}\\{{d_{21}}}&{{d_{22}}}& \cdots &{{d_{2n}}}\\ \vdots & \vdots & \ddots & \vdots \\{{d_{n1}}}&{{d_{n2}}}& \cdots &{{d_{nn}}}\end{array}} \right)\\ = \det \left( {\begin{array}{*{20}{c}}{{d_{11}}}&{{d_{12}}}& \cdots &{{d_{1n}}}\\{{d_{21}}}&{{d_{22}}}& \cdots &{{d_{2n}}}\\ \vdots & \vdots & \ddots & \vdots \\{{d_{n1}}}&{{d_{n2}}}& \cdots &{{d_{nn}}}\end{array}} \right)\\\det \left( {\begin{array}{*{20}{c}}I&0\\C&D\end{array}} \right) = \det D\end{array}\)

03

Use the properties of determinants

Note that

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right) = \left( {\begin{array}{*{20}{c}}A&0\\0&I\end{array}} \right)\left( {\begin{array}{*{20}{c}}I&0\\C&D\end{array}} \right)\\\det \left( {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right) = \det \left( {\left( {\begin{array}{*{20}{c}}A&0\\0&I\end{array}} \right)\left( {\begin{array}{*{20}{c}}I&0\\C&D\end{array}} \right)} \right)\\ = \left( {\det \left( {\begin{array}{*{20}{c}}A&0\\0&I\end{array}} \right)} \right)\left( {\det \left( {\begin{array}{*{20}{c}}I&0\\C&D\end{array}} \right)} \right)\\\det \left( {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right) = \left( {\det A} \right)\left( {\det D} \right)\end{array}\)

We know that \(\det M = \det {M^T}\). Hence,

\(\begin{array}{c}\det \left( {\begin{array}{*{20}{c}}A&B\\0&D\end{array}} \right) = \det {\left( {\begin{array}{*{20}{c}}A&B\\0&D\end{array}} \right)^T}\\ = \det \left( {\begin{array}{*{20}{c}}{{A^T}}&0\\{{B^T}}&{{D^T}}\end{array}} \right)\\ = \left( {\det {A^T}} \right)\left( {\det {D^T}} \right)\\\det \left( {\begin{array}{*{20}{c}}A&B\\0&D\end{array}} \right) = \left( {\det A} \right)\left( {\det D} \right)\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the determinants in Exercises 5-10 by row reduction to echelon form.

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{\bf{0}}&{\bf{2}}\\{ - {\bf{2}}}&{ - {\bf{5}}}&{\bf{7}}&{\bf{4}}\\{\bf{3}}&{\bf{5}}&{\bf{2}}&{\bf{1}}\\{\bf{1}}&{ - {\bf{1}}}&{\bf{2}}&{ - {\bf{3}}}\end{array}} \right|\)

Compute the determinants of the elementary matrices given in Exercises 25-30. (See Section 2.2)

\[\left[ {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&k&{\bf{1}}\end{aligned}} \right]\]

Use Exercise 25-28 to answer the questions in Exercises 31 ad 32. Give reasons for your answers.

31. What is the determinant of an elementary row replacement matrix?

Question: In Exercise 8, determine the values of the parameter s for which the system has a unique solution, and describe the solution.

8.

\(\begin{array}{c}{\bf{3}}s{x_{\bf{1}}} + {\bf{5}}{x_{\bf{2}}} = {\bf{3}}\\12{x_{\bf{1}}} + {\bf{5}}s{x_{\bf{2}}} = {\bf{2}}\end{array}\)

In Exercises 27 and 28, A and B are \[n \times n\] matrices. Mark each statement True or False. Justify each answer.

27. a. A row replacement operation does not affect the determinant of a matrix.

b. The determinant of A is the product of the pivots in any echelon form U of A, multiplied by \({\left( { - {\bf{1}}} \right)^r}\), where r is the number of row interchanges made during row reduction from A to U.

c. If the columns of A are linearly dependent, then \(det\left( A \right) = 0\).

d. \(det\left( {A + B} \right) = det{\rm{ }}A + det{\rm{ }}B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free