Question: 18. Apply the result of Exercise 16 to find the determinants of the following matrices, and confirm your answers using a matrix program.

\(\left( {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{8}}&{\bf{8}}&{\bf{8}}\\{\bf{8}}&{\bf{3}}&{\bf{8}}&{\bf{8}}\\{\bf{8}}&{\bf{8}}&{\bf{3}}&{\bf{8}}\\{\bf{8}}&{\bf{8}}&{\bf{8}}&{\bf{3}}\end{array}} \right)\) \(\left( {\begin{array}{*{20}{c}}{\bf{8}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{8}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{8}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{8}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{8}}\end{array}} \right)\)

Short Answer

Expert verified

The determinant of \(\left( {\begin{array}{*{20}{c}}3&8&8&8\\8&3&8&8\\8&8&3&8\\8&8&8&3\end{array}} \right)\) is \( - 3375\) and the determinant of \(\left( {\begin{array}{*{20}{c}}8&3&3&3&3\\3&8&3&3&3\\3&3&8&3&3\\3&3&3&8&3\\3&3&3&3&8\end{array}} \right)\) is 12500. Both answers are the same as obtained from the matrix program.

Step by step solution

01

Describe the given data

From Exercise 16, you have \(\det A = {\left( {a - b} \right)^{n - 1}}\left( {a + \left( {n - 1} \right)b} \right)\) for \(A = \left( {\begin{array}{*{20}{c}}a&b&b& \cdots &b\\b&a&b& \cdots &b\\b&b&a& \cdots &b\\ \vdots & \vdots & \vdots & \ddots & \vdots \\b&b&b& \cdots &a\end{array}} \right)\) is size ofn.

02

Find the determinant of the first matrix

Let \({A_1} = \left( {\begin{array}{*{20}{c}}3&8&8&8\\8&3&8&8\\8&8&3&8\\8&8&8&3\end{array}} \right)\). Here, \(a = 3,b = 8,\) and \(n = 4\). Using the formula in Exercise 16, you get:

\(\begin{array}{c}det{A_1} = {\left( {3 - 8} \right)^{4 - 1}}\left( {3 + \left( {4 - 1} \right)8} \right)\\ = {\left( { - 5} \right)^3}\left( {3 + 24} \right)\\ = - 125\left( {27} \right)\\\det {A_1} = - 3375\end{array}\)

03

Find the determinant for the second matrix

Let \({A_2} = \left( {\begin{array}{*{20}{c}}8&3&3&3&3\\3&8&3&3&3\\3&3&8&3&3\\3&3&3&8&3\\3&3&3&3&8\end{array}} \right)\). Here, \(a = 8,b = 3,\) and \(n = 5\). Therefore, using the formula in Exercise 16, you get:

\(\begin{array}{c}det{A_2} = {\left( {8 - 3} \right)^{5 - 1}}\left( {8 + \left( {5 - 1} \right)3} \right)\\ = {\left( 5 \right)^4}\left( {8 + 12} \right)\\ = 625\left( {20} \right)\\\det {A_2} = 12500\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the determinants in Exercises 9-14 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

\(\left| {\begin{aligned}{*{20}{c}}{\bf{6}}&{\bf{3}}&{\bf{2}}&{\bf{4}}&{\bf{0}}\\{\bf{9}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{1}}&{\bf{0}}\\{\bf{8}}&{ - {\bf{5}}}&{\bf{6}}&{\bf{7}}&{\bf{1}}\\{\bf{2}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{4}}&{\bf{2}}&{\bf{3}}&{\bf{2}}&{\bf{0}}\end{aligned}} \right|\)

Each equation in Exercises 1-4 illustrates a property of determinants. State the property

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}&{ - {\bf{4}}}\\{\bf{3}}&{\bf{7}}&{\bf{4}}\end{array}} \right| = \left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}&{ - {\bf{4}}}\\{\bf{0}}&{\bf{1}}&{ - {\bf{2}}}\end{array}} \right|\)

Question: 11. Find the area of the parallelogram determined by the points \(\left( {1,4} \right),\)\(\left( { - 1,5} \right),\)\(\left( {3,9} \right),\) and \(\left( {5,8} \right)\). How can you tell that the quadrilateral determined by the points is actually a parallelogram?

Question:In Exercises 31–36, mention an appropriate theorem in your explanation.

36. Let U be a square matrix such that \({U^T}U = I\). Show that\(det{\rm{ }}U = \pm 1\).

Compute the determinants in Exercises 9-14 by cofactor expnasions. At each step, choose a row or column that involves the least amount of computation.

\[\left| {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{7}}&{ - {\bf{2}}}&{\bf{0}}&{\bf{0}}\\{\bf{2}}&{\bf{6}}&{\bf{3}}&{\bf{0}}\\{\bf{3}}&{ - {\bf{8}}}&{\bf{4}}&{ - {\bf{3}}}\end{array}} \right|\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free