Chapter 3: Q26Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
26. \(\left[ {\begin{aligned}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{aligned}} \right]\).
Short Answer
The determinant of the matrix is \( - 1\).
Chapter 3: Q26Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
26. \(\left[ {\begin{aligned}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{aligned}} \right]\).
The determinant of the matrix is \( - 1\).
All the tools & learning materials you need for study success - in one app.
Get started for free
Compute the determinants in Exercises 9-14 by cofactor expnasions. At each step, choose a row or column that involves the least amount of computation.
\(\left| {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{ - {\bf{7}}}&{\bf{3}}&{ - {\bf{5}}}\\{\bf{0}}&{\bf{0}}&{\bf{2}}&{\bf{0}}&{\bf{0}}\\{\bf{7}}&{\bf{3}}&{ - {\bf{6}}}&{\bf{4}}&{ - {\bf{8}}}\\{\bf{5}}&{\bf{0}}&{\bf{5}}&{\bf{2}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{0}}&{\bf{9}}&{ - {\bf{1}}}&{\bf{2}}\end{array}} \right|\)
In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.
\(\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{5 + 3k}&{4 + 2k}\end{array}} \right]\)
In Exercises 21–23, use determinants to find out if the matrix is invertible.
21. \(\left( {\begin{aligned}{*{20}{c}}2&6&0\\1&3&2\\3&9&2\end{aligned}} \right)\)
In Exercises 24–26, use determinants to decide if the set of vectors is linearly independent.
24. \(\left( {\begin{aligned}{*{20}{c}}4\\6\\2\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 7}\\0\\7\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 3}\\{ - 5}\\{ - 2}\end{aligned}} \right)\)
Question: Use Cramer’s rule to compute the solutions of the systems in Exercises1-6.
5. \(\begin{array}{c}{x_1} + {x_2} = 3\\ - 3{x_1} + 2{x_3} = 0\\{x_2} - 2{x_3} = 2\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.