Chapter 3: Q27Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
27. \(\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\k&0&1\end{array}} \right]\).
Short Answer
The determinant of the matrix is 1.
Chapter 3: Q27Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
27. \(\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\k&0&1\end{array}} \right]\).
The determinant of the matrix is 1.
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: In Exercise 14, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.
14. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{2}}&{\bf{1}}\\{\bf{2}}&{\bf{0}}&{\bf{4}}\end{array}} \right)\)
In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.
\(\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{5 + 3k}&{4 + 2k}\end{array}} \right]\)
Question: Use Cramer’s rule to compute the solutions of the systems in Exercises1-6.
5. \(\begin{array}{c}{x_1} + {x_2} = 3\\ - 3{x_1} + 2{x_3} = 0\\{x_2} - 2{x_3} = 2\end{array}\)
Find the determinants in Exercises 5-10 by row reduction to echelon form.
\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{ - {\bf{1}}}&{\bf{0}}&{ - {\bf{2}}}\\{\bf{0}}&{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{2}}}&{ - {\bf{6}}}\\{ - {\bf{2}}}&{ - {\bf{6}}}&{\bf{2}}&{\bf{3}}&{{\bf{10}}}\\{\bf{1}}&{\bf{5}}&{ - {\bf{6}}}&{\bf{2}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{2}}&{ - {\bf{4}}}&{\bf{5}}&{\bf{9}}\end{array}} \right|\)
Compute the determinant in Exercise 2 using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column.
What do you think about this solution?
We value your feedback to improve our textbook solutions.