Chapter 3: Q28Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
28. \(\left( {\begin{aligned}{*{20}{c}}k&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\).
Short Answer
The determinant of the matrix is \(k\).
Chapter 3: Q28Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
28. \(\left( {\begin{aligned}{*{20}{c}}k&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\).
The determinant of the matrix is \(k\).
All the tools & learning materials you need for study success - in one app.
Get started for free
In Exercises 39 and 40, \(A\) is an \(n \times n\) matrix. Mark each statement True or False. Justify each answer.
39.
a. An \(n \times n\) determinant is defined by determinants of \(\left( {n - 1} \right) \times \left( {n - 1} \right)\) submatrices.
b. The \(\left( {i,j} \right)\)-cofactor of a matrix \(A\) is the matrix \({A_{ij}}\) obtained by deleting from A its \(i{\mathop{\rm th}\nolimits} \) row and \[j{\mathop{\rm th}\nolimits} \]column.
In Exercises 24–26, use determinants to decide if the set of vectors is linearly independent.
25. \(\left( {\begin{aligned}{*{20}{c}}7\\{ - 4}\\{ - 6}\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - {\bf{8}}}\\{\bf{5}}\\7\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}\\{\bf{0}}\\{ - {\bf{5}}}\end{aligned}} \right)\)
Question: Use Cramer’s rule to compute the solutions of the systems in Exercises1-6.
3. \(\begin{array}{c}3{x_1} - 2{x_2} = 3\\ - 4{x_1} + 6{x_2} = - 5\end{array}\)
Question: 17. Show that if A is \({\bf{2}} \times {\bf{2}}\), then Theorem 8 gives the same formula for \({A^{ - {\bf{1}}}}\) as that given by theorem 4 in Section 2.2.
Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 11.
11. \(\left| {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{4}}&{ - {\bf{3}}}&{ - {\bf{1}}}\\{\bf{3}}&{\bf{0}}&{\bf{1}}&{ - {\bf{3}}}\\{ - {\bf{6}}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{3}}\\{\bf{6}}&{\bf{8}}&{ - {\bf{4}}}&{ - {\bf{1}}}\end{aligned}} \right|\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.