Chapter 3: Q29E (page 165)
Compute \(det{\rm{ }}{B^4}\), where \(B = \left[ {\begin{aligned}{{}{}}1&0&1\\1&1&2\\1&2&1\end{aligned}} \right]\).
Short Answer
The value is \(\det {\rm{ }}{B^4} = 16\).
Chapter 3: Q29E (page 165)
Compute \(det{\rm{ }}{B^4}\), where \(B = \left[ {\begin{aligned}{{}{}}1&0&1\\1&1&2\\1&2&1\end{aligned}} \right]\).
The value is \(\det {\rm{ }}{B^4} = 16\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the determinants in Exercises 5-10 by row reduction to echelon form.
\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{ - {\bf{1}}}&{\bf{0}}&{ - {\bf{2}}}\\{\bf{0}}&{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{2}}}&{ - {\bf{6}}}\\{ - {\bf{2}}}&{ - {\bf{6}}}&{\bf{2}}&{\bf{3}}&{{\bf{10}}}\\{\bf{1}}&{\bf{5}}&{ - {\bf{6}}}&{\bf{2}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{2}}&{ - {\bf{4}}}&{\bf{5}}&{\bf{9}}\end{array}} \right|\)
In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.
\(\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{a + kc}&{b + kd}\\c&d\end{array}} \right]\)
Question: In Exercises 31–36, mention an appropriate theorem in your explanation.
34. Let A and P be square matrices, with P invertible. Show that \(det\left( {PA{P^{ - {\bf{1}}}}} \right) = det{\rm{ }}A\).
Compute the determinant in Exercise 8 using a cofactor expansion across the first row.
8. \(\left| {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{1}}&{\bf{2}}\\{\bf{4}}&{\bf{0}}&{\bf{3}}\\{\bf{3}}&{ - {\bf{2}}}&{\bf{5}}\end{array}} \right|\)
In Exercises 21–23, use determinants to find out if the matrix is invertible.
21. \(\left( {\begin{aligned}{*{20}{c}}2&6&0\\1&3&2\\3&9&2\end{aligned}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.