Is it true that \(det{\rm{ }}AB = \left( {det{\rm{ }}A} \right)\left( {det{\rm{ }}B} \right)\)? To find out, generate random \({\bf{5}} \times {\bf{5}}\) matrices A and B, and compute \[det AB - \left( {det A{\rm{ }}det B} \right)\]. Repeat the calculations for three other pairs of \(n \times n\) matrices, for various values of n. Report your results.

Short Answer

Expert verified

For various values of \(n\), \(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\) is always true.

Step by step solution

01

Write the MATLAB commands

To create a random\(m \times m\)matrix A, use the MATLAB command

\[ > > A = rand\left( m \right)\].

To compute thedeterminant of matrix A, use the MATLAB command

\( > > det\left( A \right)\).

02

Find the determinant of the matrix

Use the MATLAB command\(A = rand\left( {\bf{5}} \right)\)to create a random matrix of the order\(5 \times 5\).

\(A = \left[ {\begin{aligned}{*{20}{c}}{0.0782}&{0.7749}&{0.2599}&{0.2638}&{0.5499}\\{0.4427}&{0.8173}&{0.8001}&{0.1455}&{0.1450}\\{0.1067}&{0.8687}&{0.4314}&{0.1361}&{0.8530}\\{0.9619}&{0.0844}&{0.9106}&{0.8693}&{0.6221}\\{0.0046}&{0.3998}&{0.1818}&{0.5797}&{0.3510}\end{aligned}} \right]\)

Use the MATLAB command\(B = rand\left( {\bf{5}} \right)\)to create a random matrix of the order\(5 \times 5\).

\(B = \left[ {\begin{aligned}{*{20}{c}}{0.5132}&{0.1839}&{0.9448}&{0.3692}&{0.4039}\\{0.4018}&{0.2400}&{0.4909}&{0.1112}&{0.0965}\\{0.0760}&{0.4173}&{0.4893}&{0.7803}&{0.1320}\\{0.2399}&{0.0497}&{0.3377}&{0.3897}&{0.9421}\\{0.1233}&{0.9027}&{0.9001}&{0.2417}&{0.9561}\end{aligned}} \right]\)

Obtain the product matrix\(C = AB\)using the MATLAB command\({\bf{C}} = {\bf{A}}*{\bf{B}}\).

\(C = AB = \left[ {\begin{aligned}{*{20}{c}}{0.5023}&{0.8182}&{1.1654}&{0.5535}&{0.9149}\\{0.6692}&{0.7494}&{1.3905}&{0.9704}&{0.6389}\\{0.5744}&{1.1849}&{1.5520}&{0.7318}&{1.1276}\\{0.8821}&{1.1818}&{2.2492}&{1.5642}&{1.9305}\\{0.3592}&{0.5183}&{0.8012}&{0.4988}&{0.9461}\end{aligned}} \right]\)

Compute\[\det AB - \left( {\det A{\rm{ }}\det B} \right)\]using the MATLAB command shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right)*\det \left( {\rm{B}} \right)\)

So, the output is

\(\begin{aligned}{c}\det {\rm{ }}AB - \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right) = - 5.2042 \times {10^{ - 18}}\\ \approx 0.\end{aligned}\)

Thus,\[\det AB - \left( {\det A{\rm{ }}\det B} \right) = 0\], or\(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\).

Therefore, it is true that \(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\).

03

Find the determinant of the matrix

Use the MATLAB command\(A = rand\left( {\bf{4}} \right)\)to create a random matrix of the order\(4 \times 4\).

\(A = \left[ {\begin{aligned}{*{20}{c}}{0.5752}&{0.8212}&{0.6491}&{0.5470}\\{0.0598}&{0.0154}&{0.7317}&{0.2963}\\{0.2348}&{0.0430}&{0.6477}&{0.7447}\\{0.3532}&{0.1690}&{0.4509}&{0.1890}\end{aligned}} \right]\)

Use the MATLAB command\(B = rand\left( {\bf{4}} \right)\)to create a random matrix of the order\(4 \times 4\).

\(B = \left[ {\begin{aligned}{*{20}{c}}{0.6868}&{0.7802}&{0.4868}&{0.5085}\\{0.1835}&{0.0811}&{0.4359}&{0.5108}\\{0.3685}&{0.9294}&{0.4468}&{0.8176}\\{0.6256}&{0.7757}&{0.3063}&{0.7948}\end{aligned}} \right]\)

Obtain the product matrix\(C = AB\)using the MATLAB command\({\bf{C}} = {\bf{A}}*{\bf{B}}\).

\(C = AB = \left[ {\begin{aligned}{*{20}{c}}{1.1271}&{1.5430}&{1.0955}&{1.6775}\\{0.4989}&{0.9578}&{0.4535}&{0.8721}\\{0.8737}&{1.3663}&{0.6506}&{1.2629}\\{0.5579}&{0.8549}&{0.5049}&{0.7848}\end{aligned}} \right]\)

Compute\[\det AB - \left( {\det A{\rm{ }}\det B} \right)\]using the MATLAB command shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right)*\det \left( {\rm{B}} \right)\)

The output is\(\det {\rm{ }}AB - \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right) \approx 0\).

Thus,\[\det AB - \left( {\det A{\rm{ }}\det B} \right) = 0\], or\(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\).

Therefore, it is true that \(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\).

04

Find the determinant of the matrix

Use the MATLAB command\(A = rand\left( {\bf{3}} \right)\)to create a random matrix of the order\(3 \times 3\).

\(A = \left[ {\begin{aligned}{*{20}{c}}{0.6443}&{0.5328}&{0.8759}\\{0.3786}&{0.3507}&{0.5502}\\{0.8116}&{0.9390}&{0.6225}\end{aligned}} \right]\)

Use the MATLAB command\(B = rand\left( {\bf{3}} \right)\)to create a random matrix of the order\(3 \times 3\).

\(B = \left[ {\begin{aligned}{*{20}{c}}{0.5870}&{0.4709}&{0.1948}\\{0.2077}&{0.2305}&{0.2259}\\{0.3012}&{0.8443}&{0.1707}\end{aligned}} \right]\)

Obtain the product matrix\(C = AB\)using the MATLAB command\({\bf{C}} = {\bf{A}}*{\bf{B}}\).

\(C = AB = \left[ {\begin{aligned}{*{20}{c}}{0.7528}&{1.1658}&{0.3954}\\{0.4609}&{0.7236}&{0.2469}\\{0.8590}&{1.1242}&{0.4765}\end{aligned}} \right]\)

Compute\[\det AB - \left( {\det A{\rm{ }}\det B} \right)\]using MATLAB command as shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right)*\det \left( {\rm{B}} \right)\)

The output is shown below:

\(\begin{aligned}{c}\det {\rm{ }}AB - \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right) = 8.0231 \times {10^{ - 18}}\\ \approx 0\end{aligned}\)

Thus,\[\det AB - \left( {\det A{\rm{ }}\det B} \right) = 0\], or\(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\).

Therefore, it is true that \(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\).

05

Find the determinant of the matrix

Use the MATLAB command\(A = rand\left( {\bf{2}} \right)\)to create a random matrix of the order\(2 \times 2\).

\(A = \left[ {\begin{aligned}{*{20}{c}}{0.4609}&{0.2259}\\{0.8443}&{0.6443}\end{aligned}} \right]\)

Use the MATLAB command\(B = rand\left( {\bf{2}} \right)\)to create a random matrix of the order\(2 \times 2\).

\(B = \left[ {\begin{aligned}{*{20}{c}}{1.1271}&{0.7848}\\{1.3663}&{0.6506}\end{aligned}} \right]\)

Obtain the product matrix\(C = AB\)using the MATLAB command\({\bf{C}} = {\bf{A}}*{\bf{B}}\).

\(C = AB = \left[ {\begin{aligned}{*{20}{c}}{0.8281}&{0.5086}\\{1.8319}&{1.0817}\end{aligned}} \right]\)

Compute\[\det AB - \left( {\det A{\rm{ }}\det B} \right)\]using the MATLAB command shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right)*\det \left( {\rm{B}} \right)\)

The output is\(\det {\rm{ }}AB - \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right) \approx 0\).

Thus,\[\det AB - \left( {\det A{\rm{ }}\det B} \right) = 0\], or\(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\).

Therefore, it is true that \(\det {\rm{ }}AB = \left( {\det {\rm{ }}A} \right)\left( {\det {\rm{ }}B} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 24–26, use determinants to decide if the set of vectors is linearly independent.

24. \(\left( {\begin{aligned}{*{20}{c}}4\\6\\2\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 7}\\0\\7\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 3}\\{ - 5}\\{ - 2}\end{aligned}} \right)\)

Compute the determinant in Exercise 8 using a cofactor expansion across the first row.

8. \(\left| {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{1}}&{\bf{2}}\\{\bf{4}}&{\bf{0}}&{\bf{3}}\\{\bf{3}}&{ - {\bf{2}}}&{\bf{5}}\end{array}} \right|\)

Compute the determinants in Exercises 9-14 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

\(\left| {\begin{aligned}{*{20}{c}}{\bf{6}}&{\bf{3}}&{\bf{2}}&{\bf{4}}&{\bf{0}}\\{\bf{9}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{1}}&{\bf{0}}\\{\bf{8}}&{ - {\bf{5}}}&{\bf{6}}&{\bf{7}}&{\bf{1}}\\{\bf{2}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{4}}&{\bf{2}}&{\bf{3}}&{\bf{2}}&{\bf{0}}\end{aligned}} \right|\)

Question: In Exercise 15, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.

15. \(\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{ - {\bf{1}}}&{\bf{1}}&{\bf{0}}\\{ - {\bf{2}}}&{\bf{3}}&{ - {\bf{1}}}\end{array}} \right)\)

In Exercises 27 and 28, A and B are \[n \times n\] matrices. Mark each statement True or False. Justify each answer.

27. a. A row replacement operation does not affect the determinant of a matrix.

b. The determinant of A is the product of the pivots in any echelon form U of A, multiplied by \({\left( { - {\bf{1}}} \right)^r}\), where r is the number of row interchanges made during row reduction from A to U.

c. If the columns of A are linearly dependent, then \(det\left( A \right) = 0\).

d. \(det\left( {A + B} \right) = det{\rm{ }}A + det{\rm{ }}B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free