Question: Use Cramer’s rule to compute the solutions of the systems in Exercises1-6.

4. \(\begin{array}{c} - 5{x_1} + 2{x_2} = 9\\3{x_1} - {x_2} = - 4\end{array}\)

Short Answer

Expert verified

The solutions of the systems are \({x_1} = 1,{x_2} = 7\).

Step by step solution

01

State matrices \({A_1}\left( b \right)\) and \({A_2}\left( b \right)\)

For any\(n \times n\)matrix A and any b in \({\mathbb{R}^n}\), let \({A_i}\left( b \right)\) be the matrix obtained from A by replacing column \(i\)by vector\({\mathop{\rm b}\nolimits} \).

\({A_i}\left( {\mathop{\rm b}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{a_1}}& \cdots &{\mathop{\rm b}\nolimits} & \cdots &{{a_n}}\end{array}} \right)\)

The system of equations is equivalent to\(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \), where\({\mathop{\rm A}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 5}&2\\3&{ - 1}\end{array}} \right)\)and\({\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}9\\{ - 4}\end{array}} \right)\).

Matrices\({A_1}\left( b \right)\)and\({A_2}\left( b \right)\)are shown below:

\({A_1}\left( b \right) = \left( {\begin{array}{*{20}{c}}9&2\\{ - 4}&{ - 1}\end{array}} \right),{A_2}\left( b \right) = \left( {\begin{array}{*{20}{c}}{ - 5}&9\\3&{ - 4}\end{array}} \right)\)

02

Compute the determinants of the matrices

The determinant of matrix\(A\)is shown below:

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}{ - 5}&2\\3&{ - 1}\end{array}} \right|\\ = 5 - 6\\ = - 1\end{array}\)

The determinant of matrix\({A_1}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_1}\left( b \right) = \left| {\begin{array}{*{20}{c}}9&2\\{ - 4}&{ - 1}\end{array}} \right|\\ = - 9 + 8\\ = - 1\end{array}\)

The determinant of matrix\({A_2}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_2}\left( b \right) = \left| {\begin{array}{*{20}{c}}{ - 5}&9\\3&{ - 4}\end{array}} \right|\\ = 20 - 27\\ = - 7\end{array}\)

Since \(\det A = - 1\), the system has a unique solution.

03

Compute the solution of the system

Let\(A\)be aninvertible\(n \times n\) matrix. Based on Cramer’s rule,for any b in\({\mathbb{R}^n}\), theunique solution \({\mathop{\rm x}\nolimits} \)of\(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \)has entries given by

\({x_i} = \frac{{\det {A_i}\left( b \right)}}{{\det A}},\,\,\,\,i = 1,2,...,n\).

Use Cramer’s rule to compute the solution of the system as shown below:

\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _1} = \frac{{\det {A_1}\left( b \right)}}{{\det A}}\\ = 1\\{{\mathop{\rm x}\nolimits} _2} = \frac{{\det {A_2}\left( b \right)}}{{\det A}}\\ = 7\end{array}\)

Thus, the solutions of the systems are \({x_1} = 1,{x_2} = 7\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the determinants in Exercises 9-14 by cofactor expnasions. At each step, choose a row or column that involves the least amount of computation.

\(\left| {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{5}}&{ - {\bf{6}}}&{\bf{4}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{3}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{5}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{3}}\end{aligned}} \right|\)

Compute the determinants in Exercises 9-14 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

\(\left| {\begin{aligned}{*{20}{c}}{\bf{6}}&{\bf{3}}&{\bf{2}}&{\bf{4}}&{\bf{0}}\\{\bf{9}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{1}}&{\bf{0}}\\{\bf{8}}&{ - {\bf{5}}}&{\bf{6}}&{\bf{7}}&{\bf{1}}\\{\bf{2}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{4}}&{\bf{2}}&{\bf{3}}&{\bf{2}}&{\bf{0}}\end{aligned}} \right|\)

Let \(A = \left[ {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right]\) and let \(k\) be a scalar. Find a formula that relates \(\det kA\) to \(k\) and \(\det A\).

The expansion of a \({\bf{3}} \times {\bf{3}}\) determinant can be remembered by the following device. Write a second type of the first two columns to the right of the matrix, and compute the determinant by multiplying entries on six diagonals.

Add the downward diagonal products and subtract the upward products. Use this method to compute the determinants in Exercises 15-18. Warning: This trick does not generalize in any reasonable way to \({\bf{4}} \times {\bf{4}}\) or larger matrices.

\(\left| {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{3}}&{\bf{1}}\\{\bf{4}}&{ - {\bf{5}}}&{\bf{0}}\\{\bf{3}}&{\bf{4}}&{\bf{1}}\end{aligned}} \right|\)

In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.

\(\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{5 + 3k}&{4 + 2k}\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free