Question: 6. Use Cramer’s rule to compute the solution of the following system.

\(\begin{array}{c}{x_{\bf{1}}} + {\bf{3}}{x_{\bf{2}}} + \,{x_{\bf{3}}} = {\bf{4}}\\ - {x_{\bf{1}}} + \,\,\,\,\,\,\,\,\,\,{\bf{2}}{x_{\bf{3}}} = {\bf{2}}\\{\bf{3}}{x_{\bf{1}}} + \,{x_{\bf{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\, = {\bf{2}}\end{array}\)

Short Answer

Expert verified

The solution is \({x_1} = \frac{2}{5}\),\({x_2} = \frac{4}{5}\), and \({x_3} = \frac{6}{5}\).

Step by step solution

01

Write the matrix form

The matrix form of the given system is:

\(\left( {\begin{array}{*{20}{c}}1&3&1\\{ - 1}&0&2\\3&1&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}4\\2\\2\end{array}} \right)\)

Thus, \(Ax = b\), where \(A = \left( {\begin{array}{*{20}{c}}1&3&1\\{ - 1}&0&2\\3&1&0\end{array}} \right)\), \(b = \left( {\begin{array}{*{20}{c}}4\\2\\2\end{array}} \right)\), and \(x = \left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\).

Then, \({A_1}\left( b \right) = \left( {\begin{array}{*{20}{c}}4&3&1\\2&0&2\\2&1&0\end{array}} \right)\),\({A_2}\left( b \right) = \left( {\begin{array}{*{20}{c}}1&4&1\\{ - 1}&2&2\\3&2&0\end{array}} \right)\), and \({A_3}\left( b \right) = \left( {\begin{array}{*{20}{c}}1&3&4\\{ - 1}&0&2\\3&1&2\end{array}} \right)\).

02

Find the determinants

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}1&3&1\\{ - 1}&0&2\\3&1&0\end{array}} \right|\\ = - 3\left| {\begin{array}{*{20}{c}}{ - 1}&2\\3&0\end{array}} \right| + 0 - 1\left| {\begin{array}{*{20}{c}}1&1\\{ - 1}&2\end{array}} \right|\\ = - 3\left( { - 6} \right) - \left( 3 \right)\\\det A = 15\end{array}\)

\(\begin{array}{c}\det {A_1}\left( b \right) = \left| {\begin{array}{*{20}{c}}4&3&1\\2&0&2\\2&1&0\end{array}} \right|\\ = - 3\left| {\begin{array}{*{20}{c}}2&2\\2&0\end{array}} \right| + 0 - 1\left| {\begin{array}{*{20}{c}}4&1\\2&2\end{array}} \right|\\ = - 3\left( { - 4} \right) - 6\\ = 12 - 6\\\det {A_1}\left( b \right) = 6\end{array}\)

\(\begin{array}{c}\det {A_2}\left( b \right) = \left| {\begin{array}{*{20}{c}}1&4&1\\{ - 1}&2&2\\3&2&0\end{array}} \right|\\ = 1\left| {\begin{array}{*{20}{c}}{ - 1}&2\\3&2\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}1&4\\3&2\end{array}} \right| + 0\\ = - 8 - 2\left( { - 10} \right)\\ = - 8 + 20\\\det {A_2}\left( b \right) = 12\end{array}\)

\(\begin{array}{c}\det {A_3}\left( b \right) = \left| {\begin{array}{*{20}{c}}1&3&4\\{ - 1}&0&2\\3&1&2\end{array}} \right|\\ = - 3\left| {\begin{array}{*{20}{c}}{ - 1}&2\\3&2\end{array}} \right| + 0 - 1\left| {\begin{array}{*{20}{c}}1&4\\{ - 1}&2\end{array}} \right|\\ = - 3\left( { - 8} \right) - 6\\ = 24 - 6\\\det {A_3}\left( b \right) = 18\end{array}\)

03

Use Cramer’s rule

By Cramer’s rule, \({x_i} = \frac{{\det {A_i}\left( b \right)}}{{\det A}}\), \(i = 1,2,3\). Hence,

\(\begin{array}{c}{x_1} = \frac{{\det {A_1}\left( b \right)}}{{\det A}}\\ = \frac{6}{{15}}\\{x_1} = \frac{2}{5}\end{array}\)

\(\begin{array}{c}{x_2} = \frac{{\det {A_2}\left( b \right)}}{{\det A}}\\ = \frac{{12}}{{15}}\\{x_2} = \frac{4}{5}\end{array}\)

\(\begin{array}{c}{x_3} = \frac{{\det {A_3}\left( b \right)}}{{\det A}}\\ = \frac{{18}}{{15}}\\{x_3} = \frac{6}{5}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 33-36, verify that \(\det EA = \left( {\det E} \right)\left( {\det A} \right)\)where E is the elementary matrix shown and \(A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\).

34. \(\left[ {\begin{array}{*{20}{c}}1&0\\k&1\end{array}} \right]\)

Compute the determinants in Exercises 9-14 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

\(\left| {\begin{aligned}{*{20}{c}}{\bf{6}}&{\bf{3}}&{\bf{2}}&{\bf{4}}&{\bf{0}}\\{\bf{9}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{1}}&{\bf{0}}\\{\bf{8}}&{ - {\bf{5}}}&{\bf{6}}&{\bf{7}}&{\bf{1}}\\{\bf{2}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{4}}&{\bf{2}}&{\bf{3}}&{\bf{2}}&{\bf{0}}\end{aligned}} \right|\)

Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 12.

12. \(\left| {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}&{\bf{3}}&{\bf{0}}\\{\bf{3}}&{\bf{4}}&{\bf{3}}&{\bf{0}}\\{{\bf{11}}}&{\bf{4}}&{\bf{6}}&{\bf{6}}\\{\bf{4}}&{\bf{2}}&{\bf{4}}&{\bf{3}}\end{aligned}} \right|\)

Question: In Exercises 31–36, mention an appropriate theorem in your explanation.

31. Show that if A is invertible, then \(det{\rm{ }}{A^{ - 1}} = \frac{1}{{det{\rm{ }}A}}\).

Construct a random \({\bf{4}} \times {\bf{4}}\) matrix A with integer entries between \( - {\bf{9}}\) and 9, and compare det A with det\({A^T}\), \(det\left( { - A} \right)\), \(det\left( {{\bf{2}}A} \right)\), and \(det\left( {{\bf{10}}A} \right)\). Repeat with two other random \({\bf{4}} \times {\bf{4}}\) integer matrices, and make conjectures about how these determinants are related. (Refer to Exercise 36 in Section 2.1.) Then check your conjectures with several random \({\bf{5}} \times {\bf{5}}\) and \({\bf{6}} \times {\bf{6}}\) integer matrices. Modify your conjectures, if necessary, and report your results.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free