Compute the determinant in Exercise 9 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

9. \(\left| {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{\bf{0}}&{\bf{5}}\\{\bf{1}}&{\bf{7}}&{\bf{2}}&{ - {\bf{5}}}\\{\bf{3}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{8}}&{\bf{3}}&{\bf{1}}&{\bf{7}}\end{array}} \right|\)

Short Answer

Expert verified

\(\left| {\begin{array}{*{20}{c}}4&0&0&5\\1&7&2&{ - 5}\\3&0&0&0\\8&3&1&7\end{array}} \right| = 15\)

Step by step solution

01

Write the determinant formula

The determinant computed by cofactor expansion across the ith row is

\(\det A = {a_{i1}}{C_{i1}} + {a_{i2}}{C_{i2}} + \cdots + {a_{in}}{C_{in}}\).

Here, A is an \(n \times n\) matrix, and \({C_{ij}} = {\left( { - 1} \right)^{i + j}}{A_{ij}}\).

For minimum computation, choose a row or column that has zero as maximum entries.

02

Use cofactor expansion across the third row

\(\begin{array}{c}\left| {\begin{array}{*{20}{c}}4&0&0&5\\1&7&2&{ - 5}\\3&0&0&0\\8&3&1&7\end{array}} \right| = 3\left| {\begin{array}{*{20}{c}}0&0&5\\7&2&{ - 5}\\3&1&7\end{array}} \right| + 0 + 0 + 0\\ = 3\left| {\begin{array}{*{20}{c}}0&0&5\\7&2&{ - 5}\\3&1&7\end{array}} \right|\end{array}\)

03

Use cofactor expansion across the first row

\(\begin{array}{c}\left| {\begin{array}{*{20}{c}}4&0&0&5\\1&7&2&{ - 5}\\3&0&0&0\\8&3&1&7\end{array}} \right| = 3\left( {0 + 0 + 5\left| {\begin{array}{*{20}{c}}7&2\\3&1\end{array}} \right|} \right)\\ = 3\left( {5\left( 1 \right)} \right)\\ = 15\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the determinant in Exercise 20, where \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right| = {\bf{7}}\].

20. \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{{\bf{d}} + {\bf{3g}}}&{{\bf{e}} + {\bf{3h}}}&{{\bf{f}} + {\bf{3i}}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right|\]

Find the determinants in Exercises 5-10 by row reduction to echelon form.

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{5}}&{ - {\bf{4}}}\\{ - {\bf{1}}}&{ - {\bf{4}}}&{\bf{5}}\\{ - {\bf{2}}}&{ - {\bf{8}}}&{\bf{7}}\end{array}} \right|\)

Question: In Exercise 20, find the area of the parallelogram whose vertices are listed.

20. \(\left( {0,0} \right),\left( { - {\bf{2}},4} \right),\left( {4, - 5} \right),\left( {2, - 1} \right)\)

Let \(u = \left[ {\begin{aligned}{*{20}{c}}a\\b\end{aligned}} \right]\), and \(v = \left[ {\begin{aligned}{*{20}{c}}c\\{\bf{0}}\end{aligned}} \right]\), where a, b, and c are positive integers (for simplicity). Compute the area of the parallelogram determined by u, v, \({\bf{u}} + {\bf{v}}\), and 0, and compute the determinant of \(\left[ {\begin{aligned}{*{20}{c}}{\bf{u}}&{\bf{v}}\end{aligned}} \right]\), and \[\left[ {\begin{aligned}{*{20}{c}}{\bf{v}}&{\bf{u}}\end{aligned}} \right]\]. Draw a picture and explain what you find.

Compute the determinants of the elementary matrices given in Exercises 25-30. (See Section 2.2)

\[\left[ {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&k&{\bf{1}}\end{aligned}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free