In Exercises 9 and 18,construct the general solution of\(x' = Ax\)involving complex Eigen functions and then obtain the general real solution. Describe the shapes of typical trajectories.

11. \(A = \left( {\begin{aligned}{ {20}{c}}{ - 3}&{ - 9}\\2&3\end{aligned}} \right)\)

Short Answer

Expert verified

The requiredcomplex solution is:

\(x(t) = {c_1}\left( {\begin{aligned}{ {20}{c}}{( - 3 + 3i)}\\2\end{aligned}} \right){e^{(3i)t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{( - 3 - 3i)}\\2\end{aligned}} \right){e^{( - 3i)t}}\)

And, the general real solution of is:

\(y(t) = {c_1}\left( {\begin{aligned}{ {20}{c}}{ - 3\cos 3t - 3\sin 3t}\\{2\cos 3t}\end{aligned}} \right) + {c_2}\left( {\begin{aligned}{ {20}{c}}{3\cos 3t - 3\sin 3t}\\{2\sin 3t}\end{aligned}} \right)\)

Step by step solution

01

System of Differential Equations

The general solutionfor any system of differential equations withthe eigenvalues\({\lambda _1}\)and\({\lambda _2}\)with the respective eigenvectors\({v_1}\)and\({v_2}\)is given by:

\(x(t) = {c_1}{v_1}{e^{{\lambda _1}t}} + {c_2}{v_2}{e^{{\lambda _2}t}}\)

Here,\({c_1}\)and\({c_2}\)are the constants from the initial condition.

02

Calculation for eigenvalues

As per the question, we have:

\(A = \left( {\begin{aligned}{ {20}{r}}{ - 3}&{ - 9}\\2&3\end{aligned}} \right)\)

For eigenvalues, we have:

\(\begin{aligned}{c}\det \left( {x{I_2} - A} \right) = 0\\( - 3 - x)(3 - x) + 18 = 0\\{x^2} - 9 + 18 = 0\\{x^2} + 9 = 0\\x = \pm 3i\end{aligned}\)

03

Find eigenvectors for both eigenvalues

Now, forthe eigenvalue\(3i\), we have:

\(\left( {\begin{aligned}{ {20}{c}}{ - 3 - 3i}&{ - 9}\\2&{3 - 3i}\end{aligned}} \right)\left( {\begin{aligned}{ {20}{l}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = \left( {\begin{aligned}{ {20}{l}}0\\0\end{aligned}} \right)\)

So,\({x_1} = \frac{{\left( { - 3 + 3i} \right)}}{2}{x_2}\)with\({x_2}\)free.

Taking\({x_2} = 1\), we get, eigenvector:

\({v_1} = \left( {\begin{aligned}{ {20}{c}}{ - 3 + 3i}\\2\end{aligned}} \right)\)

Similarly,forthe eigenvalue\( - 3i\), we have:

\(\left( {\begin{aligned}{ {20}{c}}{ - 3 + 3i}&{ - 9}\\2&{3 + 3i}\end{aligned}} \right)\left( {\begin{aligned}{ {20}{l}}{{y_1}}\\{{y_2}}\end{aligned}} \right) = \left( {\begin{aligned}{ {20}{l}}0\\0\end{aligned}} \right)\)

So\({y_1} = \frac{{\left( { - 3 - 3i} \right)}}{2}{y_2}\)with\({y_2}\)free.

Taking\({y_2} = 1\), we get:

\({v_2} = \left( {\begin{aligned}{ {20}{c}}{ - 3 - 3i}\\2\end{aligned}} \right)\)

Using both eigenvectors, we have:

\(\begin{aligned}{c}x(t) = {c_1}{v_1}{e^{{\lambda _1}t}} + {c_2}{v_2}{e^{{\lambda _2}t}}\\ = {c_1}\left( {\begin{aligned}{ {20}{c}}{( - 3 + 3i)}\\2\end{aligned}} \right){e^{(3i)t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{( - 3 - 3i)}\\2\end{aligned}} \right){e^{( - 3i)t}}\end{aligned}\)

Hence, this is the required solution.

04

Find the real general solution

Now, the real general solution will be given as:

\(\begin{aligned}{c}x(t) = {c_1}\left( {\begin{aligned}{ {20}{c}}{( - 3 + 3i)}\\2\end{aligned}} \right){e^{(3i)t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{( - 3 - 3i)}\\2\end{aligned}} \right){e^{( - 3i)t}}\\ = {c_1}\left( {\begin{aligned}{ {20}{c}}{( - 3 + 3i)}\\2\end{aligned}} \right)(\cos 3t + i\sin 3t) + {c_2}\left( {\begin{aligned}{ {20}{c}}{( - 3 - 3i)}\\2\end{aligned}} \right)(\cos 3t - i\sin 3t)\\ = {c_1}\left( {\begin{aligned}{ {20}{c}}{ - 3\cos 3t - 3\sin 3t}\\{2\cos 3t}\end{aligned}} \right) + {c_2}\left( {\begin{aligned}{ {20}{c}}{3\cos 3t - 3\sin 3t}\\{2\sin 3t}\end{aligned}} \right)\end{aligned}\)

Hence, the real general solution of\(x' = Ax\)is given by;

\(y(t) = {c_1}\left( {\begin{aligned}{ {20}{c}}{ - 3\cos 3t - 3\sin 3t}\\{2\cos 3t}\end{aligned}} \right) + {c_2}\left( {\begin{aligned}{ {20}{c}}{3\cos 3t - 3\sin 3t}\\{2\sin 3t}\end{aligned}} \right)\), where\({c_1},{c_2} \in \mathbb{R}\)

Hence, this is the required general real solution. And, the trajectories are elliptical as the eigenvalues are complex numbers with real part zero.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\)

3. \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

Consider the growth of a lilac bush. The state of this lilac bush for several years (at year’s end) is shown in the accompanying sketch. Let n(t) be the number of new branches (grown in the year t) and a(t) the number of old branches. In the sketch, the new branches are represented by shorter lines. Each old branch will grow two new branches in the following year. We assume that no branches ever die.

(a) Find the matrix A such that [nt+1at+1]=A[ntat]

(b) Verify that [11]and [2-1] are eigenvectors of A. Find the associated eigenvalues.

(c) Find closed formulas for n(t) and a(t).

Question: Show that if \(A\) and \(B\) are similar, then \(\det A = \det B\).

Let \(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\). Explain why \({A^k}\) approaches \(\left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\) as \(k \to \infty \).

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free