Another estimate can be made for an eigenvalue when an approximate eigenvector is available. Observe that if \(A{\bf{x}} = \lambda {\bf{x}}\), then \({{\bf{x}}^T}A{\bf{x}} = {{\bf{x}}^T}\left( {\lambda {\bf{x}}} \right) = \lambda \left( {{{\bf{x}}^T}{\bf{x}}} \right)\) and the Rayleigh quotient

\(R\left( {\bf{x}} \right){\bf{ = }}\frac{{{{\bf{x}}^T}A{\bf{x}}}}{{{{\bf{x}}^T}{\bf{x}}}}\)

Equals \(\lambda \).If \({\bf{x}}\) is close to an eigenvector for \(\lambda \), then this quotient is close to \(\lambda \). When \(A\) is a symmetric matrix \({A^T} = A\) the Rayleigh quotient \(R\left( {{{\bf{x}}_k}} \right) = \frac{{{\bf{x}}_k^TA{{\bf{x}}_k}}}{{{\bf{x}}_k^T{{\bf{x}}_k}}}\)will have roughly twice as many digits of accuracy as the scaling factor \({\mu _k}\) in the power method. Verify this increased accuracy in Exercises 11 and 12 by computing \({\mu _k}\) and \(R\left( {{{\bf{x}}_k}} \right)\) for \(k{\bf{ = 1,}}....{\bf{,4}}\).

12. \(A = \left( {\begin{aligned}{ {20}{c}}{ - 3}&2\\2&0\end{aligned}} \right)\), \({{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{1}}\\{\bf{0}}\end{aligned}} \right)\)

Short Answer

Expert verified

As the actual eigenvalue is \( - 4\) and the values of \({\mu _k}\) and \(R\left( {{{\bf{x}}_k}} \right)\) in the table are estimates the eigenvalue more accurately than \({\mu _k}\).

Step by step solution

01

Write the function to compute the power matrices

\({\rm{function}}\left( {x,{\rm{lambda}}} \right) = {\rm{powermat}}(A,{x_0},{\rm{nit)}}\)

\(x = {x_0}\);

For\(n = 1:{\rm{nit}}\)

\({\rm{xnew}} = A {\rm{x}}\)

\({\rm{lambda}} = {\rm{norm(xnew,inf)/norm(x,inf);}}\)

\({\rm{fprintf('n}} = {\rm{\% 4d}}\;{\rm{lambda}} = {\rm{\% gx}} = {\rm{\% g\% g\% g\backslash n',n,lambda,x');}}\)

\({\rm{x}} = {\rm{xnew;}}\;{\rm{end x}} = {\rm{x/norm(x);\% normalise x fprintf('n}} = {\rm{\% 4d normalised x}} = {\rm{\% g\% g\% g\backslash n',n,x');}}\)

02

Estimate the data

Enter the Matrix\(A\)in MATLAB:

\( > > \;A = \left( { - 3\;2;\;2\;0} \right)\)

Enter the\({{\rm{x}}_0}\)in MATLAB:

\( > > {{\rm{x}}_0} = \left( {1\;\;\;0} \right)';\)

Now compute the power matrices.

\( > > {\rm{powermat(}}A,{x_0},5)\)

Construct the data in the table shown below:

\(k\)

\(0\)

\(0\)

\(0\)

\(0\)

\(0\)

\({{\bf{x}}_k}\)

\(\left( {\begin{aligned}{ {20}{c}}1\\0\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 1}\\{.6667}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{ - .4615}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 1}\\{.5098}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{ - .4976}\end{aligned}} \right)\)

\(A{{\bf{x}}_k}\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 3}\\2\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{4.3333}\\{ - 2.0000}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 3.9231}\\{2.0000}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{4.0196}\\{ - 2.0000}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 3.9951}\\{2.0000}\end{aligned}} \right)\)

\({\mu _k}\)

\( - 3\)

\( - 4.3333\)

\( - 3.9231\)

\( - 4.0196\)

\( - 3.9951\)

\(R\left( {{{\bf{x}}_k}} \right)\)

\( - 3\)

\( - 3.9231\)

\( - 3.9951\)

\( - 3.9997\)

\( - 3.99998\)

As the actual eigenvalue is \( - 4\) and the values of \({\mu _k}\) and \(R\left( {{{\bf{x}}_k}} \right)\) in the table are estimates the eigenvalue more accurately than \({\mu _k}\).

Hence Proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\(D = \left\{ {{{\bf{d}}_1},{{\bf{d}}_2}} \right\}\) and \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{d}}_1}} \right) = 2{{\bf{b}}_1} - 3{{\bf{b}}_2}\), \(T\left( {{{\bf{d}}_2}} \right) = - 4{{\bf{b}}_1} + 5{{\bf{b}}_2}\)

Find the matrix for \(T\) relative to \(D\), and\(B\).

Consider an invertiblen × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=Ax(t)What can you say about the stability of the systems

x(t+1)=(A-2In)x(t)

Let \({\bf{u}}\) be an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \), and let \(H\) be the line in \({\mathbb{R}^{\bf{n}}}\) through \({\bf{u}}\) and the origin.

  1. Explain why \(H\) is invariant under \(A\) in the sense that \(A{\bf{x}}\) is in \(H\) whenever \({\bf{x}}\) is in \(H\).
  2. Let \(K\) be a one-dimensional subspace of \({\mathbb{R}^{\bf{n}}}\) that is invariant under \(A\). Explain why \(K\) contains an eigenvector of \(A\).

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=ATx(t)What can you say about the stability of the systems.

x(t+1)=ATx(t)

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free