Use Exercise 12 to find the eigenvalues of the matrices in Exercises 13 and 14.

14. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{5}}&{{\bf{ - 6}}}&{{\bf{ - 7}}}\\{\bf{2}}&{\bf{4}}&{\bf{5}}&{\bf{2}}\\{\bf{0}}&{\bf{0}}&{{\bf{ - 7}}}&{{\bf{ - 4}}}\\{\bf{0}}&{\bf{0}}&{\bf{3}}&{\bf{1}}\end{array}} \right)\)

Short Answer

Expert verified

The eigenvalues of \(A\) are \( - 1\), \( - 1\), \( - 5\), \(6\).

Step by step solution

01

Step 1: Find the characteristic polynomial of \(U\)

Assume \(G = \left( {\begin{array}{*{20}{c}}U&X\\0&V\end{array}} \right)\).

Then we have,

\(\begin{aligned}{c}A &= \left( {\begin{aligned}{*{20}{c}}1&5&{ - 6}&{ - 7}\\2&4&5&2\\0&0&{ - 7}&{ - 4}\\0&0&3&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}U&X\\0&V\end{aligned}} \right)\end{aligned}\)

On comparison we get,

\(U = \left( {\begin{aligned}{*{20}{c}}1&5\\2&4\end{aligned}} \right)\),\(V = \left( {\begin{aligned}{*{20}{c}}{ - 7}&{ - 4}\\3&1\end{aligned}} \right)\)

Now characteristic polynomial of \(U\) are as shown below:

\(\begin{aligned}{c}\det \left( {\begin{aligned}{*{20}{c}}{1 - \lambda }&5\\2&{4 - \lambda }\end{aligned}} \right) &= \left( {1 - \lambda } \right)\left( {4 - \lambda } \right) - 10\\ &= {\lambda ^2} - 5\lambda - 6\\ &= \left( {\lambda + 1} \right)\left( {\lambda - 6} \right)\end{aligned}\)

02

Step 2: Find the characteristic polynomial of \(V\)

\(\begin{aligned}{c}\det \left( {\begin{aligned}{*{20}{c}}{ - 7 - \lambda }&{ - 4}\\3&{1 - \lambda }\end{aligned}} \right) &= \left( { - 7 - \lambda } \right)\left( {1 - \lambda } \right) + 12\\ &= {\lambda ^2} + 6\lambda + 5\\ &= \left( {\lambda + 1} \right)\left( {\lambda + 5} \right)\end{aligned}\)

On multiplication we get the characteristic polynomial of \(A\).

\(\begin{aligned}{c}A &= \left( {\lambda + 1} \right)\left( {\lambda - 6} \right)\left( {\lambda + 1} \right)\left( {\lambda + 5} \right)\\ &= {\left( {\lambda + 1} \right)^2}\left( {\lambda + 5} \right)\left( {\lambda - 6} \right)\end{aligned}\)

Thus, the eigenvalues of \(A\) are \( - 1\), \( - 1\), \( - 5\), \(6\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

6. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{{\bf{ - 2}}}\\{\bf{2}}&{\bf{5}}&{\bf{4}}\\{\bf{0}}&{\bf{0}}&{\bf{5}}\end{array}} \right){\bf{ = }}\left( {\begin{array}{*{20}{c}}{{\bf{ - 2}}}&{\bf{0}}&{{\bf{ - 1}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{4}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 2}}}\end{array}} \right)\)

In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

4. \(\left( {\begin{array}{*{20}{c}}{ - 2}&{12}\\{ - 1}&5\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\)

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.

Consider an invertiblen × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=Ax(t)What can you say about the stability of the systems

x(t+1)=(A-2In)x(t)

Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free